Cold Tolerance of Native and Introduced Evergreen Rhododendron Species According to Morphological and Physiological Changes

국내 자생종 및 도입종 만병초의 내한성과 관련된 형태 및 생리적변화

  • Lee, Byung-Chul (Department of Environmental Horticulture, University of Seoul) ;
  • Kim, Seong-Min (Natural Science Research Institute, University of Seoul) ;
  • Cheng, Hyo-Cheng (Department of Environmental Horticulture, University of Seoul) ;
  • Shim, Ie-Sung (Department of Environmental Horticulture, University of Seoul)
  • 이병철 (서울시립대학교 환경원예학과) ;
  • 김성민 (서울시립대학교 자연과학연구소) ;
  • 정효정 (서울시립대학교 환경원예학과) ;
  • 심이성 (서울시립대학교 환경원예학과)
  • Received : 2011.08.31
  • Accepted : 2011.10.07
  • Published : 2011.12.31

Abstract

Cold tolerance of the native Rhododendron species which are on the verge of extinction in Korean nature were compared with the introduced species and its mechanism were studied physiologically with the investigation of the leaf angle, leaf curling, and photosynthetic activity. The degree of cold tolerance measured with the leaf burning after winter season was higher in the native species, Rhododendron brachycarpum and Rhododendron brachycarpum var. roseum than all the introduced species. 'Nova Zembla', an introduced species, showed high sensitivity to the low temperature. Changes in leaf angle by the low temperature were bigger in 2 native species and 'Parker's Pink' than the other introduced species and small comparatively in 'Nova Zembla' and 'Cunningham's White' cultivar. Leaf curling also occurred strongly in 2 native species by the low temperature. While, it was comparatively little and mild in the other introduced species. Therefore these results suggested that the leaf movement such as leaf angle change and curling adapted to the low temperature is positively related to the cold tolerance of 2 native species. By the way, such relationship is not explainable in the cold-sensitive 'Parker's Pink' cultivar showing comparatively stronger leaf movement. Photosynthetic activity measured before the winter season was high in the cold-tolerant R. brachycarpum and its recovery after winter season was faster in the 2 native species and the introduced 'Cynosure' cultivar than the other introduced species. They were the lowest in the most cold-sensitive 'Nova Zembla'. This phenomena occurred similarly even in the stomatal conductivity, suggesting that the movement of water from the roots to the leaves is better and then the leaf burning after winter season become small in the cold-tolerant species. The recovery of photosynthetic activity and stomatal conductivity was comparatively slower in the cold-sensitive 'Parker's Pink'. From the above results, leaf behavior adapted to the low temperature during the winter season and water movement to the leaves are related collectively to the cold tolerance represented as the leaf burning in the Rhododendron species is suggested.

상록활엽관목으로서 꽃이 화려하고 관상가치가 높으나 멸종위기 수종인 자생만병초와 원예도입종 만병초 품종을 공시하여 내한성의 기작을 잎 운동과 광합성 활성 등의 생리적 반응을 조사하여 구명하고자 하였으며 다음과 같이 요약된다. 월동 후의 엽소 피해 정도로 측정한 내한성 정도는 자생종인 만병초와 홍만병초에서 도입종보다 크게 높았으며, 도입종 중에서도 'Nova Zembla'에서 가장 낮았고, 'Cynosure'와 'Parker's Pink'는 이보다 다소 높았다. 저온에 의한 엽각의 변화는 자생종과 'Parker's Pink' 품종에서 크게 일어났으며, 'Nova Zembla'와 'Cunningham's White'에서의 변화는 적었다. 저온에 의한 잎말림 현상도 자생종에서 크게 일어났고 도입종은 이들보다 작았으며, 도입종 중에서는 'Parker's Pink'가 다소 컸고 나머지 품종들은 작았다. 자생종의 내한성은 저온에 의한 엽각변화와 잎말림현상이 관여하는 것으로 판단되며, 내한성이 약한 'Parker's Pink'에 있어서는 잎운동 활성과의 관련성이 적어 다른 요인이 관여하고 있는 것으로 생각된다. 내한성이 강한 만병초에서 월동 전 광합성 활성이 높았고 월동 후 광합성활성의 회복이 자생종 및 도입종의 'Cynosure'에서 비교적 빨랐으며, 내한성이 가장 약했던 'Nova Zembla'에서 월동 전 광합성 활성과 월동 후 광합성활성의 회복속도가 가장 낮았다. 기공전도도는 광합성활성과 유사한 경향을 보였으며, 내한성이 강한 자생종에서 월동 후 뿌리로부터 잎으로의 수분이동이 원활하여 엽소현상이 적었고, 월동 후 기공전도도가 가장 낮았고 수분이동에 크게 제한을 받은 'Nova Zembla'에서 엽소현상이 크게 나타난 것으로 생각된다. 이상의 결과로부터 만병초 종에 있어서 월동중의 잎 운동과 월동후의 수분이동 및 광합성에 의해 축적되는 수분스트레스 관련 물질들이 종합적으로 관여하여 엽소현상으로서 나타나는 내한성을 결정하는 것으로 생각된다.

Keywords

References

  1. Caemmerer, S. and G.D. Farquhar. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376-387. https://doi.org/10.1007/BF00384257
  2. Harris, G.C., V. Antoine, M. Chan, and D. Nevidomskyte. 2006. Seasonal changes in photosynthesis, protein composition and mineral content in Rhododendron leaves. Plant Sci. 170:314-325. https://doi.org/10.1016/j.plantsci.2005.08.024
  3. Hinckley, T.M. and J.H. Braatne, 1994. Stomata, p. 323-355. In: R.E. Wilkinson (ed.). Plant-Environment Interactions. Dekker, New York.
  4. Hong, H.O., K.E. Lee, and K.C. Yoo. 1984. Studies on the wild Rhododendron brachycarpum in Korea. J. Kor. Soc. Hort. Sci. 25:50-55.
  5. Kong, W.S. 2004. Species composition and distribution of alpine plants. Kor. Geogr. Soc. 39:528-543.
  6. Kong, W.S. and D. Watts. 1993. The plant geography of Korea. Kluwer Academic Publishers. Netherlands. p. 229.
  7. Lee, M.H., J.M. Kim, and E.J. Park. 2011. Antioxidant and antigenotoxic effects of sansuyu fruit (Corni fructus) extracted with water at different temperatures. J. Kor. Soc. Food Sci. Nutr. 40:149-155. https://doi.org/10.3746/jkfn.2011.40.2.149
  8. Levitt, J. 1980. Responses of plants to environmental stress, p. 23-64. Vol. 1, Chilling freezing and high temperature stress. Academic Press, New York.
  9. Nilsen, E.T. 1987. Influence of water relations and temperature on leaf movements of Rhododendron species. Plant Physiol. 83:607-612. https://doi.org/10.1104/pp.83.3.607
  10. Nilsen, E.T. 1992. Thermonastic leaf movements: A synthesis of research with Rhododendron. Bot. J. Linn. Soc. 110:205-233. https://doi.org/10.1111/j.1095-8339.1992.tb00291.x
  11. Nilsen, E.T. 1993. Does winter leaf curling confer cold stress tolerance in Rhododendron. J. Amer. Rhododendron Soc. 47:98-104.
  12. Raymond, B.R., T. Thomas, and T. Nilsen. 2009. Freezing induced leaf movements and their potential implications to early spring carbon gain: Rhododendron maximum as exemplar. Functional Ecol. 23:463-471. https://doi.org/10.1111/j.1365-2435.2008.01534.x
  13. Sakai, A. 2003. Strategies of plants cold hardy. Hokkaido Univ. Publ., Sapporo, Japan.
  14. Sean, H. 2003. Flora - A Gardener's Encyclopedia. Timber press, Portland, USA.
  15. Swiderski, A., P. Muras, and H. Koloczek. 2004. Flavonoid composition in frost-resistant Rhododendron cultivars grown in Poland. Scientia Hort. 100:139-151. https://doi.org/10.1016/j.scienta.2003.08.013
  16. Wang, X., R. Arora, H.T. Horner, and S.L. Krebs. 2008. Structural adaptations in overwintering leaves of thermonastic and non-thermonastic Rhododendron species. J. Amer. Soc. Hort. Sci. 133:768-776.
  17. Wang, X., Y. Peng, J.W. Singer, A. Fessehaie, S.L. Krebs, and R. Arora. 2009. Seasonal changes in photosynthesis, antioxidant systems and ELIP expression in a thermonastic and nonthermonastic Rhododendron species: A comparison of photoprotective strategies in overwintering plants. Plant Sci. 177: 607-617. https://doi.org/10.1016/j.plantsci.2009.08.009