Ebb and Flow 저면관수 시스템에서 광강도와 양액농도에 따른 칼랑코에(Kalanchoe blossfeldiana 'Marlene') 생육 및 양분흡수 특성

Growth Characteristics and Nutrient Uptake of Kalanchoe Plants (Kalanchoe blossfeldiana 'Marlene') at Different Light Intensities and Nutrient Strengths in Ebb and Flow Subirrigation Systems

  • 노은희 (서울대학교 식물생산과학부 및 농업생명과학연구원) ;
  • 전하준 (대구대학교 원예학과) ;
  • 손정익 (서울대학교 식물생산과학부 및 농업생명과학연구원)
  • Noh, Eun-Hee (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Jun, Ha-Joon (Department of Horticulture, Daegu University) ;
  • Son, Jung-Eek (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2010.11.15
  • 심사 : 2011.03.22
  • 발행 : 2011.06.30

초록

광강도와 배양액 농도에 따른 칼랑코에(Kalanchoe blossfeldiana 'Marlene')의 생육단계별 양수분 흡수율과 작물생육을 조사하였다. 광강도는 일적산 광합성유효광양자속(PPF)이 6.5, 10.3, $18.2mol{\cdot}m^{-2}{\cdot}d^{-1}$의 3수준으로, 배양액의 농도는 유묘기 EC 0.5, 1.0, 1.5, $2.0dS{\cdot}m^{-1}$의 4수준, 단일처리 후 EC 1.0, 1.5, 2.0, $3.0dS{\cdot}m^{-1}$의 4수준으로 처리하였다. 유묘기 초장은 저광 조건에서 가장 길었고, 엽면적과 건물중은 PPF $10.3mol{\cdot}m^{-2}{\cdot}d^{-1}$에서 가장 높았다. 유묘기 모든 광조건에서 EC $1.5dS{\cdot}m^{-1}$일 경우에 최대 건물중과 엽면적이 나타났다. 단일처리기 초장 역시 저광 조건에서 길었고, 엽면적, 건물 중, 분지수는 광강도가 증가함에 따라 현저하게 증가하였다. 모든 광조건에서 엽면적, 건물중, 분지수는 배양액농도가 EC 1.0-$2.0dS{\cdot}m^{-1}$까지 증가하다가 EC $3.0dS{\cdot}m^{-1}$에서 현저히 감소하였고, EC $2.0dS{\cdot}m^{-1}$에서 가장 높았다. 생육이 양호하였던 EC 처리구(유묘기 EC $1.5dS{\cdot}m^{-1}$, 단일처리기 EC $2.0dS{\cdot}m^{-1}$)의 $NO_3$-N, $H_2PO_4{^-}$, $K^+$, $Ca^{2+}$, $Mg^{2+}$ 이온간의 상호간 비율을 분석한 결과 육묘단계에서는 광강도에 따라 큰 차이가 없었지만, 단일처리기에서는 큰 차이가 확인되었다. 따라서 작물의 최적의 생장을 위해 유묘기에는 광도 별 EC 조절로 충분하지만, 단일처리기에는 광강도에 따른 배양액 조성과 EC조절이 필요하다.

The objective of this study was to determine the effects of light intensity and electrical conductivity (EC) of nutrient solution on the growth and nutrient uptake of potted kalanchoe plants (Kalanchoe blossfeldiana 'Marlene') with growth stage in ebb and flow subirrigation systems. The plants were grown at four ECs of 0.5, 1.0, 1.5, and 2.0 $dS{\cdot}m^{-1}$ for seedling stage and four ECs of 1.0, 1.5, 2.0, and 3.0 $dS{\cdot}m^{-1}$ for short day stage under three daily photosynthetic photon flux (PPF) of 6.5, 10.3, 18.2 $mol{\cdot}m^{-2}{\cdot}d^{-1}$. At seedling stage, plant height was the longest under the lowest light intensity, and particularly dry weights and leaf areas were the highest at PPF 10.3 $mol{\cdot}m^{-2}{\cdot}d^{-1}$. Dry weights and leaf areas were the highest at EC 1.5 $dS{\cdot}m^{-1}$ regardless of light intensity. At short day exposure, plant height was the longest under the lowest light intensity. Dry weights, leaf areas, and number of pedicels of the plants significantly increased as light intensity increased. Under all light intensity conditions, dry weights, leaf areas, and number of pedicles increased until EC becomes to 1.0 - 2.0 $dS{\cdot}m^{-1}$. And after reached the highest at EC 2.0 $dS{\cdot}m^{-1}$, they decreased at EC 3.0 $dS{\cdot}m^{-1}$. By comparing the ion uptakes at EC 1.5 $dS{\cdot}m^{-1}$ of seedling stage and EC 2.0 $dS{\cdot}m^{-1}$ of short day stage in which the plants grew better, we confirmed that ion balance of nutrient solution among $NO_3{^-}$-N, $H_2PO_4{^-}$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were significantly changed at short day stage compared to seedling stage. For better growth of the plants, both ion balance and EC of nutrient solution should be considered under different light intensities at short day stage while control of EC is enough at seedling stage.

키워드

참고문헌

  1. Alexander, J.D. and J.R. Donnelly. 1995. Photosynthetic and transpirational responses of red spruce under-storey trees to light and temperature. Tree Physiol. 15:393-398. https://doi.org/10.1093/treephys/15.6.393
  2. Cabrera, R.I., R.Y. Evans, and J.L. Paul. 1995. Cyclic nitrogen uptake by greenhouse roses. Sci. Hort. 63:57-66. https://doi.org/10.1016/0304-4238(95)00789-V
  3. Cedergreen, N. and T.V. Madsen. 2003. Light regulation of root and leaf ${NO_3}^-$ uptake and reduction in the floating macrophyte Lemna minor. New Phytol. 161:449-457.
  4. Cui, Y.Y., E.J. Hahn, X.C. Piao, Y.B. Lee, and K.Y. Paek. 2002. Effect of nutrient solution strength on growth of doritaenopsis 'Tinny Tender' in an ebb and flow system. J. Kor. Soc. Hort. Sci. 43:86-90.
  5. Dole, J.M. and H.F. Wilkins. 1999. Floriculture. Prentice Hall, New Jersey, U.S.A. p. 403-408.
  6. Eastin, E.F. 1978. Total nitrogen determination for plant material containing nitrate. Annal. Biochem. 85:591-594. https://doi.org/10.1016/0003-2697(78)90259-2
  7. Hwang, S.J., M.Y. Lee, and B.R. Jeong. 2008. Suppression of stem growth in pot kalanchoe 'Gold Strike' by recycled subirrigational supply of plant growth retardants. African J. Biotechnol. 7:1487-1493.
  8. Israeli, Y., A. Schwartz, Z. Plaut, and D. Yakir. 1996. Effects of light regime on C, photosynthesis and yield of field-grown banana (Musa sp., Musaceae). Plant Cell Environ. 19:225-230. https://doi.org/10.1111/j.1365-3040.1996.tb00244.x
  9. James, E.C. and M.W. van Iersel. 2001. Fertilizer concentration affects growth and flowering of subirrigated petunias and begonias. HortScience 36:40-44.
  10. Jeon, M.W., E.J. Hahn, and K.Y. Paek. 2003. Effect of nutrient solution strength on growth of potted pelargonium hortorum 'Pinto White' and 'Pinto Pink' cultured in an ebb and flood irrigation system. J. Kor. Soc. Hort. Sci. 44:518-522.
  11. Kang, J.G. and M.W. van Iersel. 2009. Managing fertilization of bedding plants: A comparison of constant fertilizer concentrations versus constant leachate electrical conductivity. HortScience 44:151-156.
  12. Kim, K.S. 2001. High quality cuttings and pot plant production of Kalanchoe blossfeldiana. Res. Agr. Life Sci. 5:29-35.
  13. Kim, S.H., W. Oh, and K.S. Kim. 2007. Effects of nitrogen concentration and ${NO_3}^-:{NH_4}^+$ ratio of nutrient solution on stock plant growth, cutting yield, and quality in Kalanchoe blossfeldiana. Hort. Environ. Biotechnol. 48:52-59.
  14. Kim, W.S., M.Y. Roh, and J.H. Lieth. 2008. Nutrient uptake potential of cut roses (Rosa hybrida L.) in soilless culture. Acta Hort. 7:45-52.
  15. Le Bot, J., S. Adamowicz, and P. Robin. 1998. Enzymatic methods for detection of mineral element deficiencies in citrus leaves: a mini-review. J. Plant Nutr. 22:139-150.
  16. Lu, Y.J. and J.E. Son. 2005. Effects of nutrient strength and light intensity on nutrient uptake and growth of young kalanchoe plants (Kalanchoe blossfeldiana 'Marlene') at seedling stage. J. Bio-Environment Control. 14:149-154.
  17. Kim, K.D, E.H. Lee, J.W. Lee, I.H. Cho, B.H. Moon, B.Y. Lee, J.E. Son, and C. Chun. 2008. Daily changes in rates of nutrient and water uptake, xylem sap exudate, and sapflow of hydroponically grown tomatoes. Hort. Environ. Biotechnol. 49:209-215.
  18. Mankin, K.R. and R.P. Fynn. 1996. Modelling individual nutrient uptake by plants: relating demand to microclimate. Agric. Syst. 50:101-114. https://doi.org/10.1016/0308-521X(94)00054-U
  19. Mortensen, L.M. 1994. Effects of day/night temperature variations on growth, morphogenesis and flowering of Kalanchoe blossfeldiana v. Poelln. At different $CO_2$ concentrations, daylengths and photon flux densities. Sci. Hort. 59:233-241. https://doi.org/10.1016/0304-4238(94)90016-7
  20. Mortensen, L.M. 2000. Effects of air humidity on growth, flowering, keeping quality and water relation of four short-day greenhouse species. Sci. Hort. 86:299-310. https://doi.org/10.1016/S0304-4238(00)00155-2
  21. Nemali, K.S. and M.W. van Iersel. 2004a. Light intensity and fertilizer concentration: Optimal fertilizer solution concentration from water-use efficiency of wax begonia. HortScience 39: 1287-1292.
  22. Nemali, K.S. and M.W. van Iersel. 2004b. Light intensity and fertilizer concentration: II. Optimal fertilizer solution concentration for species differing in light requirement and growth rate. HortScience 39:1293-1297.
  23. Noh, E.H. and J.E. Son. 2010. Plant growth and nutrient uptake of Kalanchoe plants (Kalanchoe blossfeldiana 'New Alter') and nutrient accumulation of growing media with growth stage at different nutrient strengths in ebb and flow subirrigation systems. Kor. J. Hort. Sci. Technol. 28:973-979.
  24. Pardossi, A., F. Falossi, F. Malorgio, L. Incrocci, and G. Bellocchi. 2005. Empirical models of macronutrient uptake in melon plants grown in recirculating nutrient solution culture. J. Plant Nutr. 27:1261-1280. https://doi.org/10.1081/PLN-120038547
  25. Rouphael, Y., G. Colla, A. Battistelli, S. Moscatello, S. Proietti, and E. Rea. 2004. Yield, water requirement, nutrient uptake and fruit quality of zucchini squash grown in soil and closed soilless culture. J. Hort. Sci. Biotechnol. 79:423-430.
  26. Rouphael, Y. and G. Colla. 2005. Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Sci. Hort. 105:177-195. https://doi.org/10.1016/j.scienta.2005.01.025
  27. Rouphael, Y., M.T. Cardarelli, E. Rea, and G. Colla. 2008. The influence of irrigation system and nutrient solution concentration on potted geranium production under various conditions of radiation and temperature. Sci. Hort. 118:328-337. https://doi.org/10.1016/j.scienta.2008.06.022
  28. Rouphael, Y. and G. Colla. 2009. The influence of drip irrigation or subirrigation on zucchini squash grown in closed-loop substrate culture with high and low nutrient solution concentrations. HortScience 44:306-311.
  29. Son, J.E., M.M. Oh, Y.J. Lu, K.S. Kim, and G.A. Giacomelli. 2006. Nutrient-flow wick culture system for potted plant production: System characteristics and plant growth. Sci. Hort. 107:392-398. https://doi.org/10.1016/j.scienta.2005.11.001
  30. Sonneveld, C. and W. Voogt. 2009. Plant Nutrition of Greenhouse Crops. Springer, Dordrecht.
  31. Uva, W.L., T.C. Weiler, and R.A. Milligan. 1998. A survey on the planning and adoption of zero runoff subirrigation systems in greenhouse operations. HortScience 33:193-196.
  32. van Os, E.A., 1999. Closed soilless growing systems: a sustainable solution for Dutch greenhouse horticulture. Water Sci. Technol. 39:105-112.
  33. Verberkt, H.D., M.A. Jongh, and R. Schaefer. 1996. Invloed van voeding sconcentratie (EC) op groeien kwaliteit kalanchoe. Proefstation voor Bloemisterij en Glasgroente, Aalsmeer, Rapport 61:47.
  34. Yu, S.J., J.S. Lee, S.J. Jeong, and B.S. Yoo. 2003. Nutrient uptake patterns of native Rhododendron species in Korea and China under ebb and flow subirrigation. J. Kor. Soc. Hort. Sci. 44:824-828.