Changes in Bioactive Compounds Contents of 'Maehyang' and 'Seolhyang' Strawberry Fruits by UV Light Illumination

  • Kim, Sung-Kyeom (Department of Plant Science, Seoul National University) ;
  • Bae, Ro-Na (National Instrumentation Center for Environmental Management, Seoul National University) ;
  • Chun, Chang-Hoo (Department of Plant Science, Seoul National University)
  • 투고 : 2010.12.24
  • 심사 : 2011.03.17
  • 발행 : 2011.06.30

초록

The net photosynthetic rate of 'Seolhyang' strawberry plants was measured daily for 7 days after treatment at three UV illumination dosages (0, 9.8, and 29.5 $kJ{\cdot}m^{-2}$). The net photosynthetic rates of the strawberry plants with 9.8 and 29.5 $kJ{\cdot}m^{-2}$ UV light illumination decreased by 20.2 and 61.4%, respectively, at 7 days after UV light treatments. UV treatments with two illumination dosages (7.9 and 15.7 $kJ{\cdot}m^{-2}$) altered the phenolic compounds contents during the cultivation period when compared to those in the control fruits. The anthocyanin content with 7.9 $kJ{\cdot}m^{-2}$ UV light illumination of 'Seolhyang' increased by 18.7% compared with those in control fruits at the 11 DAT. However, the anthocyanin content of 'Maehyang' was not significantly different among treatments during experiment period. The highest level of ellagic acid was found with 7.9 $kJ{\cdot}m^{-2}$ UV light illumination in both cultivars at the 11 DAT. Our results showed that strawberries illuminated with UV light during cultivation period had higher bioactive compounds contents than control fruits. These results suggest that UV light treatments may be a useful non-chemical way of promoting strawberry fruits quality.

키워드

참고문헌

  1. Aaby, K., D. Ekeberg, and G. Skrede. 2007. Characterization of phenolic compounds in strawberry (Fragaria ${\times}$ ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J. Agric. Food Chem. 55:4395-4406. https://doi.org/10.1021/jf0702592
  2. Allende, A. and F. Artes. 2003. UV-C radiation as a novel technique for keeping quality of fresh processed 'Lollo Rosso' lettuce. Food Res. Intl. 36:739-746. https://doi.org/10.1016/S0963-9969(03)00054-1
  3. Allende, A., A. Marín, B. Buendía, F. Tomás-Barberán, and M.I. Gil. 2007. Impact of combined postharvest treatments (UV-C light, gaseous $O_3$, superatmospheric $O_2$ and high $CO_2$) on health promoting compounds and shelf-life of strawberries. Postharvest Biol. Technol. 46:201-211. https://doi.org/10.1016/j.postharvbio.2007.05.007
  4. Allende, A., J.L. McEvoy, Y. Luo, F. Artes, and C.Y. Wang. 2006. Effectiveness of two-sided UV-C treatments in inhibiting natural microflora and extending the shelf-life of minimally processed 'Red Oak Leaf' lettuce. Food Microbiol. 23:241-249. https://doi.org/10.1016/j.fm.2005.04.009
  5. Anderson, J.W., D.A. Deakins, T.L. Floore, B.M. Smith, and S.E. Whitis. 1990. Dietary fiber and coronary heart disease. Crit. Rev. Food Sci. Nutr. 29:95-147. https://doi.org/10.1080/10408399009527518
  6. Ayala-Zavala, F.J., S.Y. Wang, C.Y. Wang, and G.A. Gonzalez-Aguilar. 2004. Effect of storage temperatures on antioxidants capacity and aroma compounds in strawberry fruit. Food Sci. Technol. 37:687-695.
  7. Baka, M., J. Mercier, F. Corcuff, F. Castaigne, and J. Arul. 1999. Photochemical treatment to improve storability of fresh strawberries. J. Food Sci. 64:1068-1072. https://doi.org/10.1111/j.1365-2621.1999.tb12284.x
  8. Ben-Yehoshua, S., V. Rodov, J.J. Kim, and S. Carmeli. 1992. Preformed and induced antifungal materials of citrus fruits in relation to the enhancement of decay resistance by heat and ultraviolet treatments. J. Agric. Food Chem. 40:1217-1221. https://doi.org/10.1021/jf00019a029
  9. Chappel, J. and K. Hahlbrock. 1984. Transcription of plant defence genes in response to UV light or fungal elicitor. Nature 311: 76-78. https://doi.org/10.1038/311076a0
  10. Clifford, M.N. and A. Scalbert. 2000. Ellagitannins-nature, occurrence and dietary burden. J. Sci. Food Agric. 80:1118-1125. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1118::AID-JSFA570>3.0.CO;2-9
  11. De Flora, S. and C. Ramel. 1988. Mechanisms of inhibitors of mutagenesis and carcinogensis. Classification and overview. Mutation Res. 202:285-306. https://doi.org/10.1016/0027-5107(88)90193-5
  12. Dong, Y.H., D. Mitra, A. Kootstra, C. Lister, and J. Lancaster. 1995. Postharvest stimulation of skin color in Royal Gala apples. J. Amer. Soc. Hort. Sci. 120:95-100.
  13. Ensminger, P.A. 1993. Control of development in plants and fungi by far-UV radiation. Physiol. Plant 88:501-508. https://doi.org/10.1111/j.1399-3054.1993.tb01365.x
  14. Erkan, M., C.Y. Wang, and D.T. Krizek. 2001. UV-C radiation reduces microbial populations and deterioration in Cucurbita pepo fruit tissue. Environ. Expt. Bot. 45:1-9. https://doi.org/10.1016/S0098-8472(00)00073-3
  15. Ferreyra, R.M., S.Z. Vina, A. Mugridge, and A.R. Chaves. 2007. Growth and ripening season effects on antioxidant capacity of strawberry cultivar Selva. Sci. Hort. 112:27-32. https://doi.org/10.1016/j.scienta.2006.12.001
  16. Gonzalez-Barrio, R., D. Beltran, E. Cantos, M.I. Gil, J.C. Espin, and F. Tomas-Barberan. 2006. Comparison of ozone and UV-C treatments on the postharvest stilbenoid monomer, dimer, and trimer induction in var. 'Superior' white table grapes. J. Agric. Food Chem. 54:4222-4228. https://doi.org/10.1021/jf060160f
  17. Hadwiger, L.A. and M.E. Schwochau. 1971. Ultraviolet lightinduced formation of pisatin and phenylalanine ammonia lyase. Plant Physiol. 47:588-590. https://doi.org/10.1104/pp.47.4.588
  18. Hakkien, S.H., S.O. Karenlampi, H.M. Mykkanen, I.M. Heinonen, and A.R. Torronen. 2000. Ellagic acid content in berries: Influence of domestic processing and storage. Eur. Food Res. Technol. 212:75-80. https://doi.org/10.1007/s002170000184
  19. Harris, J.R. 1996. Subcellular biochemistry, ascrobic acid: Biochemistry and biocemical cell biology, Vol. 25. Plenum, New York, NY., USA.
  20. Hayatsu, H., S. Arimoto, and T. Negishi. 1988. Dietary inhibitors of mutagenesis and carcinogenesis. Mutation Res. 202:429-446. https://doi.org/10.1016/0027-5107(88)90204-7
  21. Heinonen, I.M., A.S. Meyer, and E.N. Frankel. 1998. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. J. Agric. Food Chem. 46:4107-4112. https://doi.org/10.1021/jf980181c
  22. Kalt, W., A. Howell, J.C. Duy, C.F. Forney, and J.E. McDonald. 2001. Horticultural factors affecting antioxidant capacity of blueberries and other small fruit. HortTechnology 11:523-528.
  23. Kataoka, I., K. Beppu, A. Sugiyama, and S. Taira. 1996. Enhancement of coloration of 'Satohnishki' sweet cherry fruit by postharvest irradiation with ultraviolet radiation. Environ. Control Biol. 34:313-319. https://doi.org/10.2525/ecb1963.34.313
  24. Kataoka, I., A. Sugiyama, and K. Beppu. 2003. Role of ultraviolet radiation in accumulation of anthocyanin in berries of 'Gros Colman' grapes (Vitis vinfera L.). J. Jpn. Soc. Hort. Sci. 72:1-6. https://doi.org/10.2503/jjshs.72.1
  25. Kim, S., K.S. Kim, and J.B. Park. 2006. Changes of various chemical components by the difference of the degree of ripening and harvesting factors in two single-harvested peppers (Capsicum annuum L.). Kor. J. Food Sci. Technol. 38:615-620.
  26. Klopotek, Y., K. Otto, and V. Böhm. 2005. Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins, and antioxidant capacity. J. Agric. Food Chem. 53:5640-5646. https://doi.org/10.1021/jf047947v
  27. Lee, S.K. and A.A. Kader. 2000. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 20:207-220. https://doi.org/10.1016/S0925-5214(00)00133-2
  28. Maharaj, R., J. Arul, and P. Nadeau. 1999. Effect of photochemical treatment in the preservation of fresh tomato (Lycopersicon esculentum cv. Capello) by delaying senescence. Postharvest Biol. Technol. 15:13-23. https://doi.org/10.1016/S0925-5214(98)00064-7
  29. Marquenie, D., C.W. Michiels, A.H. Geeraerd, A. Schenk, C. Soontjens, J.F. Van Impe, and B.M. Nicolai. 2002. Using survival analysis to investigate the effect of UV-C and heat treatment on storage rot of strawberry and sweet cherry. Intl. J. Food Microbiol. 73:187-196. https://doi.org/10.1016/S0168-1605(01)00648-1
  30. Marquenie, D., C.W. Michiels, J.F. Van Impe, E. Schrevens, and B.N. Nicolai. 2003. Pulsed white light in combination with UV-C and heat to reduce storage rot of strawberry. Postharvest Biol. Technol. 28:455-461. https://doi.org/10.1016/S0925-5214(02)00214-4
  31. Mazza, C.A., D. Battista, A.M. Zina, M. Szwarcberg-Bracchitta, C.V. Giordano, A. Acevedo, A.L. Scopel, and C.L. Ballare. 1999. The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses. Plant Cell Environ. 22:61-70. https://doi.org/10.1046/j.1365-3040.1999.00381.x
  32. Mercier, J., J. Arul, R. Ponnampalam, and M. Boulet. 1993. Induction of 6-methoxymellein and resistance to storage pathogens in carrot slices by UV-C. J. Phytopathol. 137:44-54. https://doi.org/10.1111/j.1439-0434.1993.tb01324.x
  33. Mercier, J., M. Baka, B. Reddy, R. Corcuff, and J. Arul. 2001. Shortwave ultraviolet irradiation for control of decay caused by Botrytis cinerea in bell pepper: Induced resistance and germicidal effects. J. Amer. Soc. Hort. Sci. 126:128-133.
  34. Miller, J.C. 1994. Importance of glycemic index in diabetes. Amer. J. Clin. Nutr. 59 (Suppl.):747S-752S.
  35. Nigro, F., A. Ippolito, V. Lattanzio, D.D. Venere, and M. Salerno. 2000. Effect of ultraviolet-C light on postharvest decay of strawberry. J. Plant Pathol. 82:29-37.
  36. Oomah, B.D. and G. Mazza. 2000. Functional foods, p. 1176-1182. In: F.J. Francis, (ed.), The wiley encyclopedia of science and technology. Wiley, New York, NY, USA.
  37. Ordidge, M., P. Garcí-Macías, N.H. Battey, M.H. Gordon, P. Hadley, P. John, J.A. Lovegrove, E. Vysini, and A. Wagstaffe. 2010. Phenolic contents of lettuce, strawberry, raspberry, and blueberry crops cultivated under plastic films varying in ultraviolet transparency. Food Chem. 119:1224-1227. https://doi.org/10.1016/j.foodchem.2009.08.039
  38. Pan, J., A. Vicente, G. Martínez, A. Chaves, and P. Civello. 2004. Combined use of UV-C irradiation and heat treatment to improve postharvest life of strawberry fruit. J. Sci. Food Agric. 84:1831-1838. https://doi.org/10.1002/jsfa.1894
  39. Parks, E.J. 2002. Dietary carbohydrate's effects on lipogenesis and the relationship of lipogenesis to blood insulin and glucose concentrations. Br. J. Nutr. 87 (Suppl. 2):S247-S253.
  40. Perez, A.G., C. Sanz, J.J. Rios, R. Olias, and J.M. Olias. 1999. Effect of ozone treatment on postharvest srawberry quality. J. Agric. Food Chem. 47:1652-1656. https://doi.org/10.1021/jf980829l
  41. Perkins-Veazie, P., J.K. Collins, and L. Howard. 2007. Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biol. Technol. 47:280-285.
  42. Scalzo, J., A. Politi, N. Pellegrini, B. Mezzetti, and M. Battino. 2005. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 21:207-213. https://doi.org/10.1016/j.nut.2004.03.025
  43. Stoner, G.D. 1989. Ellagic acid: Anaturally ocurring inhibitor of chemically-induced cancer. Proc. Ann. Mtg. Amer. Strawberry Growers Assn., Gran Rapids, MI., USA.
  44. Teramura, A.H. 1983. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol. Plant 58:415-427. https://doi.org/10.1111/j.1399-3054.1983.tb04203.x
  45. Terry, P., E. Giovannucci, K.B. Michels, L. Bergkvist, H. Hansen, L. Holmberg, and A. Wolk. 2001. Fruit, vegetables, dietary fiber, and risk of colorectal cancer. J. Natl. Cancer Inst. 93:525-533. https://doi.org/10.1093/jnci/93.7.525
  46. Valkama, E., M. Kivimäenpää, H. Hartikainen, and A. Wulff. 2003. The combined effects of enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure in strawberry (Fragaria ${\times}$ ananassa) and barley (Hordeum vulgare) treated in the field. Agric. For. Meteorol. 120:267-278. https://doi.org/10.1016/j.agrformet.2003.08.021
  47. Velioglu, Y.S., G. Mazza, L. Gao, and B.D. Oomah. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46:4113-4117. https://doi.org/10.1021/jf9801973
  48. Vicente, A.R., B. Repice, G.A. Martinez, A.R. Chaves, P.M. Civello, and G.O. Zozzi. 2004. Maintenance of fresh boysenberry fruit quality with UV-C light and heat treatments combined with low storage temperature. J. Hort. Sci. Biotechnol. 79: 246-251.
  49. Wang, C.Y., C. Chen, and S.Y. Wang. 2009. Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chem. 117:426-431. https://doi.org/10.1016/j.foodchem.2009.04.037
  50. Wang, H., G. Cao, and R.L. Prior. 1996. Total antioxidant capacity of fruits. J. Agric. Food Chem. 44:701-705. https://doi.org/10.1021/jf950579y
  51. Wang, S.Y. and W. Zheng. 2001. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem. 49:4977-4982. https://doi.org/10.1021/jf0106244
  52. Wang, S.Y., W. Zheng, and G.J. Galletta. 2002. Cultural system affects fruit quality and antioxidant capacity in strawberries. J. Agric. Food Chem. 50:6534-6542. https://doi.org/10.1021/jf020614i
  53. Weisburger, J.H. 2001. Eat to live, not live to eat. Nutrition 16:767-773.