References
- Abe, M., M. Fujiwara, K. Kurotani, S. Yokoi, and K. Shimamoto. 2008. Identification of dynamin as an interactor of rice GIGANTEA by tandem affinity purification (TAP). Plant Cell Physiol. 49:420-432. https://doi.org/10.1093/pcp/pcn019
- Balasubramanian, S., S. Sureshkumar, J. Lempe, and D. Weigel. 2006. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet. 2:e106. https://doi.org/10.1371/journal.pgen.0020106
- Blanchard, M.G. and E.S. Runkle. 2006. Temperature during the day, but not during the night, controls flowering of Phalaenopsis orchids. J. Exp. Bot. 57:4043-4049. https://doi.org/10.1093/jxb/erl176
- Cao, S., M. Ye, and S. Jiang. 2005. Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep. 24:683-690. https://doi.org/10.1007/s00299-005-0061-x
- Cui, Y.Y., D.M. Pandey, E.J. Hahn, and K.Y. Park. 2004. Effect of drought on physiological aspects of crassulacean acid metabolism in Doritaenopsis. Plant Sci. 167:1219-1226. https://doi.org/10.1016/j.plantsci.2004.06.011
- Dunford, R.P., S. Griffiths, V. Christodoulou, and D.A. Laurie. 2005. Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor. Appl. Genet. 110:925-931. https://doi.org/10.1007/s00122-004-1912-5
- Fowler, S., K. Lee, H. Onouchi, A. Samach, K. Richardson, B. Morris, G. Coupland, and J. Putterill. 1999. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO. J. 18:4679-4688. https://doi.org/10.1093/emboj/18.17.4679
- Fowler, S. and M.F. Thomashow. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675-1690. https://doi.org/10.1105/tpc.003483
- Hayama, R. and G. Coupland. 2004. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol. 135:677-684. https://doi.org/10.1104/pp.104.042614
- Hayama, R., T. Izawa, and K. Shimamoto. 2002. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol. 43:494-504. https://doi.org/10.1093/pcp/pcf059
- Hayama, R., S. Yokoi, S. Tamaki, M. Yano, and K. Shimamoto. 2003. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719-722. https://doi.org/10.1038/nature01549
- Hecky, J. and K.M. Muller. 2005. Structural perturbation and compensation by directed evolution at physiological temperature leads to thermostabilization of beta-lactamase. Biochemistry 44:12640-12654. https://doi.org/10.1021/bi0501885
- Izawa, T., T. Oikawa, S. Tokutomi, K. Okuno, and K. Shimamoto. 2000. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J. 22:391-399. https://doi.org/10.1046/j.1365-313X.2000.00753.x
- Jung, J.H., Y.H. Seo, P.J. Seo, J.L. Reyes, J. Yun, N.H. Chua, and C.M. Park. 2007. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19:2736-2748. https://doi.org/10.1105/tpc.107.054528
- Kojima, S., Y. Takahashi, Y. Kobayashi, L. Monna, T. Sasaki, T. Araki, and M. Yano. 2002. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43:1096-1105. https://doi.org/10.1093/pcp/pcf156
- Lee, H., S.J. Yoo, J.H. Lee, W. Kim, S.K. Yoo, H. Fitzgerald, J.C. Carrington, and J.H. Ahn. 2010. Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res. 38:3081-3093. https://doi.org/10.1093/nar/gkp1240
- Levy, Y.Y. and C. Dean. 1998. The transition to flowering. Plant Cell. 10:1973-1990. https://doi.org/10.1105/tpc.10.12.1973
- Park, D.H., D.E. Somers, Y.S. Kim, Y.H. Choy, H.K. Lim, M.S. Soh, H.J. Kim, S.A. Kay, and H.G. Nam. 1999. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579-1582. https://doi.org/10.1126/science.285.5433.1579
- Reeves, P.H. and G. Coupland. 2000. Response of plant development to environment: control of flowering by daylength and temperature. Curr. Opin. Plant Biol. 3:37-42. https://doi.org/10.1016/S1369-5266(99)00041-2
- Sothern, R.B., T.S. Tseng, S.L. Orcutt, N.E. Olszewski, and W.L. Koukkari. 2002. GIGANTEA and SPINDLY genes linked to the clock pathway that controls circadian characteristics of transpiration in Arabidopsis. Chronobiol. Int. 19:1005-1022. https://doi.org/10.1081/CBI-120015965
- Tranquilli, G. and J. Dubcovsky. 2000. Epistatic interaction between vernalization genes Vrn-Am1 and Vrn-Am2 in diploid wheat. J. Hered. 91:304-306. https://doi.org/10.1093/jhered/91.4.304
- Tseng, T.S., P.A. Salome, C.R. McClung, and N.E. Olszewski. 2004. SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell 16:1550-1563. https://doi.org/10.1105/tpc.019224
- Vaz, A.P.A., R.C.L. Figueiredo-Ribeiro, and G.B. Kerbauy. 2004. Photoperiod and temperature effects on in vitro growth and flowering of P. pusilla, an epiphytic orchid. Plant Physiol. Biochem. 42:411-415. https://doi.org/10.1016/j.plaphy.2004.03.008
- Yan, L., A. Loukoianov, A. Blechl, G. Tranquilli, W. Ramakrishna, P. SanMiguel, J.L. Bennetzen, V. Echenique, and J. Dubcovsky. 2004. The wheat VRN2 gene is a flowering repressor downregulated by vernalization. Science 303:1640-1644. https://doi.org/10.1126/science.1094305
- Yan, L., A. Loukoianov, G. Tranquilli, M. Helguera, T. Fahima, and J. Dubcovsky. 2003. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA. 100: 6263-6268. https://doi.org/10.1073/pnas.0937399100
- Zhao, X.Y., M.S. Liu, J.R. Li, C.M. Guan, and X.S. Zhang. 2005. The wheat TaGI1, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog. Plant Mol. Biol. 58:53-64. https://doi.org/10.1007/s11103-005-4162-2