DOI QR코드

DOI QR Code

Quantitative Trait Loci and Candidate Genes Affecting Fatty Acid Composition in Cattle and Pig

  • Maharani, Dyah (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Jo, Cheo-Run (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Jeon, Jin-Tae (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, Jun-Heon (Department of Animal Science and Biotechnology, Chungnam National University)
  • Received : 2011.01.31
  • Accepted : 2011.05.02
  • Published : 2011.06.30

Abstract

Investigations into fatty acid composition in meats are becoming more important due to consumer demand for high quality healthy food. Marker-assisted selection has been applied to livestock to improve meat quality by directly selecting animals for favorable alleles that affect economic traits. Quantitative trait loci affecting fatty acid composition in cattle and pigs were investigated, and five candidate genes (ACACA, FASN, SCD, FABPs, and SREBP-1) were significantly associated with fatty acid composition. The information presented here should provide valuable guidelines to detect causative mutations affecting fatty acid composition in cattle and pigs.

Keywords

References

  1. Abe, T., Saburi, J., Hasebe, H., Hasebe, T., Misumi, S., Nade, T., Nakajima, H., Shoji, N., Kobayashi, M., and Kobayashi, E. (2009) Novel mutations of the FASN gene and their effect on fatty acid composition in Japanese Black beef. Biochem. Genet. 47, 397-411. https://doi.org/10.1007/s10528-009-9235-5
  2. Abu-Elheiga, L., Almarza-Ortega, D. B., Baldini, A., and Wakil, S. J. (1997) Human acetyl-CoA carboxylase 2 Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J. Biol. Chem. 272, 10669-10677. https://doi.org/10.1074/jbc.272.16.10669
  3. Alexander, L. J., Macneil, S. J., Geary, T. W., Snelling, W. M., Rule, D. C., and Scanga, J. A. (2007) Quantitative trait loci with additive effects on palatability and fatty acid composition of meat in a Wagyu-Limousin F2 population. Anim. Genet. 38, 506-513. https://doi.org/10.1111/j.1365-2052.2007.01643.x
  4. Alfaia, C. P. M., Alves, S. P., Martins, S. I. V., Costa, A. S. H., Fontes, C. M. G. A., Lemos, J. P. C., Bessa, R. J. B., and Prates, J. A. M. (2009) Effect of the feeding system on intramuscular fatty acids and conjugated linoleic acid isomers of beef cattle, with emphasis on their nutritional value and discriminatory ability. Food Chem. 114, 939-946. https://doi.org/10.1016/j.foodchem.2008.10.041
  5. Animal Quantitative Trait Locus (QTL) database (AnimalQTLdb). Available from: http://www.animalgenome.org/cgi-bin/QTLdb/index. Accessed Dec. 20, 2010.
  6. Arnyasi, M., Grindflek, E., Javor, A., and Lien, S. (2006) Investigation of two candidate genes for meat quality traits in a quantitative trait locus region on SSC6: the porcine short heterodimer partner and heart fatty acid binding protein genes. J. Anim. Breed. Genet. 123, 198-203. https://doi.org/10.1111/j.1439-0388.2006.00588.x
  7. Barber, M. C. and Travers, M. T. (1998) Elucidation of a promoter activity that directs the expression of acetyl-CoA carboxylase alpha with an alternative N-terminus in a tissuerestricted fashion. Biochem. J. 333, 17-25.
  8. Barber, M. C., Price, N. T., and Travers, M. T. (2005) Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim. Biophys. Acta 1733, 1-28. https://doi.org/10.1016/j.bbalip.2004.12.001
  9. Barendse, W., Bunch, R. J., Thomas, M. B., and Harrison, B. E. (2009) A splice site single nucleotide polymorphism of the fatty acid binding protein 4 gene appears to be associated with intramuscular fat deposition in longissimus muscle in Australian cattle. Anim. Genet. 40, 770-773. https://doi.org/10.1111/j.1365-2052.2009.01913.x
  10. Beuzen, N. D., Stear, M. J., and Chang, K. C. (2000) Molecular markers and their use in animal breeding. The Vet. J. 160, 42-52. https://doi.org/10.1053/tvjl.2000.0468
  11. Bhuiyan, M. S. A., Yu, S. L., Jeon, J. T., Yoon, D., Cho, Y. M., Park, E. W., Kim, E. W., Kim, K. S., and Lee, J. H. (2009) DNA polymorphisms in SREBF1 and FASN genes affect fatty acid composition in Korean cattle (Hanwoo). Asian-Aust. J. Anim. Sci. 22, 765-773. https://doi.org/10.5713/ajas.2009.80573
  12. Bou, R., Codony, R., Tres, A., Decker, E. A., and Guardiola, F. (2009) Dietary strategies to improve nutritional value, oxidative stability, and sensory properties of poultry products. Crit. Rev. Food Sci. Nutr. 49, 800-822. https://doi.org/10.1080/10408390902911108
  13. Calvo, J. H., Lopez-Corrales, N. L., Anderson, S. I., Skinner, T. M., Marcos, S., Osta, R., Archibald, A. L., and Zaragoza, P. (2000) Assignment of acetyl-coenzyme A carboxylase alpha (ACACA) to pig chromosome 12 (12p13$\rightarrow$p12) by fluorescence in situ hybridization and confirmation by genetic mapping. Cytogenet. Cell Genet. 90, 238-239. https://doi.org/10.1159/000056778
  14. Casas, E., Shackelford, S. D., Keele, J. W., Koohmaraie, M., Smith, T. P., and Stone, R. T. (2003) Detection of quantitative trait loci for growth and carcass composition in cattle. J. Anim. Sci. 81, 2976-2983.
  15. Cho, S., Park, T. S., Yoon, D. H., Cheong, H. S., Namgoong, S., Park, B. L., Lee, H. W., Han, C. S., Kim, E. M., Cheong, I. C., Kim, H., and Shin, H. D. (2008) Identification of genetic polymorphisms in FABP3 and FABP4 and putative association with back fat thickness in Korean native cattle. BMB Rep. 41, 29-34. https://doi.org/10.5483/BMBRep.2008.41.1.029
  16. Cho, K. H., Kim, M. J., Jeon, G. J., and Chung, H. Y. (2010) Association of genetic variants for FABP3 gene with back fat thickness and intramuscular fat content in pig. Mol. Biol. Rep. 38, 2161-2166.
  17. Clop, A., Ovilo, C., Perez-Enciso, M., Cercos, A., Tomas, A., Fernandez, A., Coll, A. , Folch, J. M., Barragan, C., Diaz, I., Oliver, M. A., Varona, L., Silio, L., Sanchez, A., and Noguera, J. L. (2003) Detection of QTL affecting fatty acid composition in the pig. Mamm. Genome 14, 650-656. https://doi.org/10.1007/s00335-002-2210-7
  18. Chmurzynska, A. (2006) The multigene family of fatty acidbinding proteins (FABPs): function, structure and polymorphism. J. Appl. Genet. 47, 39-48. https://doi.org/10.1007/BF03194597
  19. Chmurzynska, A., Szydlowski, M., Stachowiak, M., Stankiewicz, M., and Switonski, M. (2007) Association of a new SNP in promoter region of the porcine FABP3 gene with fatness traits in a polish synthetic line. Anim. Biotechnol. 18, 37-44. https://doi.org/10.1080/10495390600671560
  20. Decker, E. A. and Park, Y. (2010) Healthier meat products as functional foods. Meat Sci. 86, 49-55. https://doi.org/10.1016/j.meatsci.2010.04.021
  21. de Koning, D. J., Janss, L. L., Rattink, A. P., van Oers, P. A., de Vries, B. J., Groenen, M. A., van der Poel, J. J., de Groot, P. N., Brascamp, E. W., and van Arendonk, J. A. (1999) Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics 152, 1679-1690.
  22. Desvergne, B. and Wahli, W. (1999) Peroxisome proliferator- activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649-688. https://doi.org/10.1210/er.20.5.649
  23. Diana, P., Nichols, P. J., and Thompson, J. M. (1998) The effect of sire breed on the melting point and fatty acid composition of subcutaneous fat in steers. J. Anim. Sci. 76, 87-95.
  24. Enser, M. and Wood, J. D. (1993) Effect of time of year on fatty acid composition and melting point of UK lamb. Proceed. 39th International Cong. Meat Sci. Technol., Calgary, Canada, pp 74.
  25. Estelle, J., Mercade, A., Perez-Enciso, M., Pena, R. N., Silio, L., Sanchez, A., and Folch, J. M. (2009a) Evaluation of FABP2 as candidate gene for a fatty acid composition QTL in porcine chromosome 8. J. Anim. Breed. Genet. 126, 52-58. https://doi.org/10.1111/j.1439-0388.2008.00754.x
  26. Estelle, J., Fernandez, A. I., Perez-Enciso, M., Fernandez, A., Rodriguez, C., Sanchez, A., Noguera, J. L., and Folch, J. M. (2009b) A non-synonymous mutation in a conserved site of the MTTP gene is strongly associated with protein activity and fatty acid profile in pigs. Anim Genet. 40, 813-820.
  27. Food and Agricultural Organization (2003) Diet, nutrition and the prevention of chronic disease. Report of joint WHO/FAO expert consultant, Rome, Italy.
  28. Gallardo, D., Quintanilla, R., Varona, L., Diaz, I., Ramirez, O., Pena, R. N., and Amills, M. (2009) Polymorphism of the pig acetyl-coenzyme A carboxylase alpha gene is associated with fatty acid composition in a Duroc commercial line. Anim. Genet. 40, 410-417. https://doi.org/10.1111/j.1365-2052.2009.01854.x
  29. Gerbens, F., Verburg, F. J., Van Moerkerk, H. T. B., Engel, W., Buist, J. H., Veerkamp, and te Pas, M. F. (2001) Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. J. Anim. Sci. 79, 347-354.
  30. Glatz, J. F. C. and van der Vusse, G. J. (1996) Cellular fatty acid binding proteins: their function and physiological significance. Prog. Lipid Res. 35, 243-282. https://doi.org/10.1016/S0163-7827(96)00006-9
  31. Guo, T., Ren, J., Yang, K., Ma, J., Zhang, Z., and Huang, L. (2009) Quantitative trait loci for fatty acid composition in longissimus dorsi and abdominal fat: results from a White Duroc x Erhualian intercross F2 population. Anim. Genet. 40, 185-191. https://doi.org/10.1111/j.1365-2052.2008.01819.x
  32. Gutierrez-Gil, B., Wiener, P., Nute, G. R., Burton, D., Gill, J. L., Wood, J. D., and Williams, J. L. (2008) Detection of quantitative trait loci for meat quality traits in cattle. Anim. Genet. 39, 51-61. https://doi.org/10.1111/j.1365-2052.2007.01682.x
  33. Gutierrez-Gil, B., Wiener, P., Richardson, R. I., Wood, J. D., and Williams, J. L. (2010) Identification of QTL with effects on fatty acid composition of meat in a Charolais x Holstein cross population. Meat Sci. 85, 721-729. https://doi.org/10.1016/j.meatsci.2010.03.031
  34. Hoashi, S., Ashida, N., Ohsaki, H., Utsugi, T., Sasazaki, S., Taniguchi, M., Oyama, K., Mukai, F., and Mannen, H. (2007) Genotype of bovine sterol regulatory element binding protein-1 (SREBP-1) is associated with fatty acid composition in Japanese Black cattle. Mamm. Genome 18, 880-886. https://doi.org/10.1007/s00335-007-9072-y
  35. Hoashi, S., Hinenoya, T., Tanaka, A., Ohsaki, H., Sasazaki, S., Taniguchi, M., Oyama, K., Mukai, F., and Mannen, H. (2008) Association between fatty acid compositions and genotypes of FABP4 and LXR-alpha in Japanese black cattle. BMC Genet. 9, 84-90.
  36. Horton, J. D., Bashmakov, Y., Shimomura, I., and Shimano, H. (1998) Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. P. Natl. Acad. Sci. USA 95, 5987-5992. https://doi.org/10.1073/pnas.95.11.5987
  37. Hussain M. M., Shi, J., and Dreizen, P. (2003) Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J. Lipid Res. 44, 22-32. https://doi.org/10.1194/jlr.R200014-JLR200
  38. Jayakumar, A., Chirala, S. S., Chinault, A. C., Baldini, A., Abu-Elheiga, L., and Wakil, S. J. (1994) Isolation and chromosomal mapping of genomic clones encoding the human Fatty Acid Synthase Gene. Genomics 23, 420-424. https://doi.org/10.1006/geno.1994.1518
  39. John, L. C., Lunt, D. K., and Smith, S. B. (1991) Fatty acid elongation and desaturation enzyme activities of bovine liver and subcutaneous adipose tissue microsomes. J. Anim. Sci. 69, 1064-1073.
  40. Joshi, A. K. and Smith, S. (1993) Construction, expression, and characterization of a mutated animal fatty acid synthase deficient in the dehydrase function. J. Biol. Chem. 268, 22508-22513.
  41. Jung S., Choe, J. H., Kim, B., Yun, H., Kruk, Z. A., and Jo, C. (2010) The effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Sci. 86, 520-526. https://doi.org/10.1016/j.meatsci.2010.06.007
  42. Keys, A., Grande, F., and Anderson, J. T. (1974) Bias and Misrepresentationrevisite perspective in saturated fat. Am. J. Clin. Nutr. 27, 188-212.
  43. Kim, Y. C. and Ntambi, J. M. (1999) Regulation of stearoyl- CoA desaturase genes: role in cellular metabolism and preadipocyte differentiation. Biochem. Biophys. Res. Commun. 266, 1-4. https://doi.org/10.1006/bbrc.1999.1704
  44. Kim, Y., Kong, M., Nam, Y. J., and Lee, C. (2006) A quantitative trait locus for oleic fatty acid content on Sus scrofa chromosome 7. J. Hered. 97, 535-537. https://doi.org/10.1093/jhered/esl026
  45. Kim, J. H., Hwangbo, J., Choi, N. J., Park, H. G., Yoon, D. H., Park, W., Lee, S. H., Park, B. K., and Kim, Y. F. (2007) Effect of dietary supplementation with conjugated linoleic acid, with oleic, linoleic, or linolenic acid, on egg quality characteristics and fat accumulation in the egg yolk. Poultry Sci. 86, 1180-1186. https://doi.org/10.1093/ps/86.6.1180
  46. Lee, C., Chung, Y., and Kim, J. H. (2003) Quantitative trait loci mapping for fatty acid contents in the backfat on porcine chromosomes 1, 13, and 18. Mol. Cells 15, 62-67.
  47. Lee, S. H., van der Werf, J. H., Park, E. W., Oh, S. J., Gibson, J. P., and Thompson, J. M. (2010) Genetic polymorphisms of the bovine fatty acid binding protein 4 gene are significantly associated with marbling and carcass weight in Hanwoo (Korean cattle). Anim. Genet. 41, 442-444.
  48. Li, C. L., Pan, Y. C., Meng, H., Wang, Z. L., and Huang, X. G. (2006) Distributions of polymorphism of ADD1, MC4R, H-FABP gene, associated with IMF and BF in 3 populations in pig. Yi Chuan 28, 159-164.
  49. Luo, X. C. and Kim, K. H. (1990) An enhancer element in the house-keeping promoter for acetyl-CoA carboxylase gene. Nucleic Acids Res. 18, 3249-3254. https://doi.org/10.1093/nar/18.11.3249
  50. Malau-Aduli, A. E., Siebert, B. D., Bottema, C. D., and Pitchford, W. S. (1998) Breed comparison of the fatty acid composition of muscle phospholipids in Jersey and Limousin cattle. J. Anim. Sci. 76, 766-773.
  51. Mao, J., Marcos, S., Davis, S. K., Burzlaff, J., and Seyfert, H. M. (2001) Genomic distribution of three promoters of the bovine gene encoding acetyl-CoA carboxylase alpha and evidence that the nutritionally regulated promoter I contains a repressive element different from that in rat. Biochem. J. 358, 127-135. https://doi.org/10.1042/0264-6021:3580127
  52. Matsuhashi, T., Maruyama, S., Uemoto, Y., Kobayashi, N., Mannen, H., Abe, T., Sakaguchi, S., and Kobayashi, E. (2010) Effects of FASN, SCD, SREBP1 and GH gene polymorphisms on fatty acid composition and carcass traits in Japanese Black cattle. J. Anim. Sci. 89, 12-22.
  53. Melton S. L., Amiri M., Davis, G. W., and Backus, W. R. (1982) Flavor and chemical characteristics of ground beef from grass-, forage-, grain and grain-finished steers. J. Anim. Sci. 55, 77-87.
  54. Mercade, A., Estelle, J., Perez-Enciso, M., Varona, L., Silio, L., Noguera, J. L., Sanchez, A., and Folch, J. M. (2006) Characterization of the porcine acyl-CoA synthetase longchain 4 gene and its association with growth and meat quality traits. Anim. Genet. 37, 219-224. https://doi.org/10.1111/j.1365-2052.2006.01436.x
  55. Michal, J. J., Zhang, Z. W., Gaskins, C. T., and Jiang, Z. (2006) The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses. Anim. Genet. 37, 400-402. https://doi.org/10.1111/j.1365-2052.2006.01464.x
  56. Mizoguchi, Y., Watanabe, T., Fujinaka, K., Iwamoto, E., and Sugimoto, Y. (2006) Mapping of quantitative trait loci for carcass traits in a Japanese Black (Wagyu) cattle population. Anim. Genet. 37, 51-54. https://doi.org/10.1111/j.1365-2052.2005.01367.x
  57. Morris, C. A., Cullen, N. G., Glass, B. C., Hyndman, D. L., Manley, T. R., Hickey, S. M., McEwan, J. C., Pitchford, W. S., Bottema, C. D., and Lee, M. A. (2007) Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm. Genome 18, 64-74. https://doi.org/10.1007/s00335-006-0102-y
  58. Mourot, J. and Hermier, D. (2001) Lipids in monogastric animal meat. Reprod. Nutri. Develop. 41, 109-18. https://doi.org/10.1051/rnd:2001116
  59. Munoz, G., Ovilo, C., Noguera, J. L., Sanchez, A., Rodriguez, C., and Silio, L. (2003) Assignment of the fatty acid synthase (FASN) gene to pig chromosome 12 by physical and linkage mapping. Anim. Genet. 34, 234-235. https://doi.org/10.1046/j.1365-2052.2003.00987.x
  60. Munoz, G., Alves, E., Fernandez, A., Ovilo, C., Barragan, C., Estelle, J., Quintanilla, R., Folch, J. M., Silio, L., Rodriguez, M. C., and Fernandez, A. I. (2007) QTL detection on porcine chromosome 12 for fatty-acid composition and association analyses of the fatty acid synthase, gastric inhibitory polypeptide and acetyl-coenzyme A carboxylase alpha genes. Anim. Genet. 38, 639-646. https://doi.org/10.1111/j.1365-2052.2007.01668.x
  61. Nii, M., Hayashi, T., Tani, F., Niki, A., Mori, N., Fujishima- Kanaya, N., Komatsu, M., Aikawa, K., Awata, T., and Mikawa, S. (2006) Quantitative trait loci mapping for fatty acid composition traits in perirenal and back fat using a Japanese wild boar x Large White intercross. Anim. Genet. 37, 342-347. https://doi.org/10.1111/j.1365-2052.2006.01485.x
  62. Noci, F., French, P., Monahan, F. J., and Moloney, A. P. (2007) The fatty acid composition of muscle fat and subcutaneous adipose tissue of grazing heifers supplemented with plant oil-enriched concentrates. J. Anim .Sci. 85, 1062-1073.
  63. Ntambi, J. M. (1995) The regulation of stearoyl-CoA desaturase (SCD). Prog. Lipid Res. 34, 139-150. https://doi.org/10.1016/0163-7827(94)00010-J
  64. Ohsaki, H., Tanaka, A., Hoashi, S., Sasazaki, S., Oyama, K., Taniguchi, M., Mukai, F., and Mannen, H. (2009) Effect of SCD and SREBP genotypes on fatty acid composition in adipose tissue of Japanese Black cattle herds. J. Anim. Sci. 80, 225-232. https://doi.org/10.1111/j.1740-0929.2009.00638.x
  65. Ordovas, L., Roy, R., Pampin, S., Zaragoza, P., Osta, R., Rodriguez-Rey, J. C., and Rodellar, C. (2008) The g.763G>C SNP of the bovine FASN gene affects its promoter activity via Sp-mediated regulation: implications for the bovine lactating mammary gland. Physiol. Genomics 34, 144-148. https://doi.org/10.1152/physiolgenomics.00043.2008
  66. Ovilo, C., Perez-Enciso, M., Barragan, C., Clop, A., Rodriquez, C., Oliver, M. A., Toro, M. A., and Noruera, J. L. (2000) A QTL for intramuscular fat and backfat thickness is located on porcine chromosome 6. Mamm. Genome 11, 344-346. https://doi.org/10.1007/s003350010065
  67. Pannier, L., Mullen, A. M., Hamill, R. M., Stapleton, P. C., and Sweeney, T. (2010) Association analysis of single nucleotide polymorphisms in DGAT1, TG and FABP4 genes and intramuscular fat in crossbred Bos taurus cattle. Meat Sci. 85, 515-518. https://doi.org/10.1016/j.meatsci.2010.02.025
  68. Perez-Enciso, M., Clop, A., Noguera, J. L., Ovilo, C., Coll, A., Folch, J. M., Babot, D., Estany, J., Oliver, M. A., Diaz, I., and Sanchez, A. (2000) A QTL on pig chromosome 4 affects fatty acid metabolism: evidence from an Iberian by Landrace intercross. J. Anim. Sci. 78, 2525-2531.
  69. Ren, J., Knorr, C., Habermann, F., Fries, R., Huang, L. S., and Brenig, B. (2003) Assignment of the porcine stearoyl- CoA desaturase (SCD) gene to SSC14q27 by fluorescence in situ hybridization and by hybrid panel mapping. Anim. Genet. 34, 471-473. https://doi.org/10.1046/j.0268-9146.2003.01058.x
  70. Roy, R., Gautier, M., Hayes, H., Laurent, P., Osta, R., Zaragoza, P., Eggen, A., and Rodellar, C. (2001) Assignment of the fatty acid synthase (FASN) gene to bovine chromosome 19 (19q22) by in situ hybridization and confirmation by somatic cell hybrid mapping. Cytogenet. Cell Genet. 93, 141-142. https://doi.org/10.1159/000056970
  71. Roy, R., Zaragoza, P., Gautier, M., Eggen, A., and Rodellar, C. (2005) Radiation hybrid and genetic linkage mapping of two genes related to fat metabolism in cattle: fatty acid synthase (FASN) and glycerol-3-phosphate acyltransferase mitochondrial (GPAM). Anim. Biotechnol. 16, 1-9. https://doi.org/10.1081/ABIO-200044295
  72. Roy, R., Ordovas, L., Zaragoza, P., Romero, A., Moreno, C., Altarriba, J., and Rodellar, C. (2006) Association of polymorphisms in the bovine FASN gene with milk-fat content. Anim. Genet. 37, 215-218. https://doi.org/10.1111/j.1365-2052.2006.01434.x
  73. Sanchez, M. P., Iannuccelli, N., Basso, B., Bidanel, J. P., Billon, Y., Gandemer, G., Gilbert, H., Larzul, C., Legault, C., Riquet, J., Milan, D., and Le Roy, P. (2007) Identification of QTL with effects on intramuscular fat content and fatty acid composition in a Duroc x Large White cross. BMC Genet. 8:55-63.
  74. Smith, S. B., Lunt, D. K., Chung, K. Y., Choi, C. B., Tume, R. K., and Zembayashi, M. (2006) Adiposity, fatty acid composition, and delta-9 desaturase activity during growth in beef cattle. Anim. Sci. J. 77, 478-486. https://doi.org/10.1111/j.1740-0929.2006.00375.x
  75. Taniguchi, M., Utsugi, T., Oyama, K., Mannen, H., Kobayashi, M., Tanabe, Y., Ogino, A., and Tsuji, S. (2004) Genotype of stearoyl-coA desaturase is associated with fatty acid composition in Japanese Black cattle. Mamm. Genome 15, 142-148. https://doi.org/10.1007/s00335-003-2286-8
  76. Taylor, J. F., Countiho, L. L., Herring, K. K., Gallagher, D. S., Brennemen, R. A., Burney, N., Sanders, J. O., Turner, J. W., Smith, S. B., Miller, R. K., Savell, J. W., and Davis, S. K. (1998) Candidate gene analysis of GHI for effect on growth and carcass characteristics of cattle. Anim. Genet. 29, 194-201. https://doi.org/10.1111/j.1365-2052.1998.00317.x
  77. Tshipuliso, N. O. M., Alexander, L. J., Geary, T. W., Snelling, W. M., Rule, D. C., Koltes, J. E., Mote, B. E., and Mac- Neil, M. D. (2008) Mapping QTL for fatty acid composition that segregates between the Japanese Black and Limousine cattle breed. S. Afr. J. Anim. Sci. 38, 126-130.
  78. Uemoto, Y., Sato, S., Ohnishi, C., Terai, S., Komatsuda, A., and Kobayashi, E. (2009) The effects of single and epistatic quantitative trait loci for fatty acid composition in a Meishan x Duroc crossbred population. J. Anim. Sci. 87, 3470-3476. https://doi.org/10.2527/jas.2009-1917
  79. Uemoto, Y., Abe, T., Tameoka, N., Hasebe, H., Inoue, K., Nakajima, H., Shoji, N., Kobayashi, M., and Kobayashi, E. (2010) Whole-genome association study for fatty acid composition of oleic acid in Japanese Black cattle. Anim. Genet. 42, 141-148.
  80. Urban, T., Mikolasova, R., Kuciel, J., Ernst, M., and Ingr, I. (2002) A study of associations of the H-FABP genotypes with fat and meat production of pigs. J. Appl. Genet. 43, 505-509.
  81. Van Horn, C. G., Caviglia, J. M., Li, L. O., Wang, S., Granger, D. A., and Coleman, R. A. (2005) Characterization of recombinant longchain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 8, 1635-1642.
  82. Varona, L., Ovilo, C., Clop, A., Noguera, J. L., Perez-Enciso, M., Coll, A., Folch, J. M., Barragan, C., Toro, M. A., Babot, D., and Sanchez, A. (2002) QTL mapping for growth and carcass traits in an Iberian by Landrace pig intercross: additive, dominant and epistatic effects. Genet. Res. 80, 145-154.
  83. Vidal, O. and Amills, M. (2004) Assignment of the fatty acid Coenzyme A ligase, long chain 2 (FACL2) gene to porcine chromosome 15. Anim. Genet. 35, 245.
  84. Wakil, S. J. (1989) Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28, 4523-4530. https://doi.org/10.1021/bi00437a001
  85. Weimar, J. D., DiRusso, C. C., Delio, R., and Black, P. N. (2002) Functional role of fatty acyl-coenzyme A synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids. Amino acid residues within the ATP/AMP signature motif of Escherichia coli FadD are required for enzyme activity and fatty acid transport. J. Biol. Chem. 277, 29369-29376. https://doi.org/10.1074/jbc.M107022200
  86. Westerling, D. B. and Hedrick, H. B. (1979) Fatty acid composition of bovine lipids as influenced by diet, sex and anatomical location and relationship to sensory characteristics. J. Anim. Sci. 48, 1343-1348.
  87. Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E., Sheard, P. R., and Enser, M. (2004) Effects of fatty acids on meat quality: a review. Meat Sci. 66, 21-32. https://doi.org/10.1016/S0309-1740(03)00022-6
  88. Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I., and Whittington, F. M. (2008) Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 78, 343-358. https://doi.org/10.1016/j.meatsci.2007.07.019
  89. Woolett, L. A., Spady, D. K., and Dietchy, J. M. (1992) Saturated and unsaturated fatty acid independently regulate low density lipoprotein receptor activity and production rate. J. Lipid Res. 33, 77-88.
  90. World Health Organization. (2003) WHO/FAO release independent Expert Report on diet and chronic disease. Available from: http://www.who.int/mediacentre/news/releases/2003/pr20/en/. Accessed Dec. 29, 2010.
  91. Yang, A., Larsen, T. W., Powell, V. H., and Tume, R. K. (1999) A comparison fat composition of Japanese and Longterm grain-fed Australian steers. Meat Sci. 51:1-9. https://doi.org/10.1016/S0309-1740(98)00065-5
  92. Zhang, S., Knight, T. J., Stalder, K. J., Goodwin, R. N., Lonergan, S. M., and Beitz, D. C. (2007) Effects of breed, sex, and halothane genotype on fatty acid composition of pork longissimus muscle. J. Anim. Sci. 85, 583-591.
  93. Zhang, S., Knight, T. J., Reecy, J. M., and Beitz, D. C. (2008) DNA polymorphisms in bovine fatty acid synthase are associated with beef fatty acid composition. Anim.Genet. 39, 62-70. https://doi.org/10.1111/j.1365-2052.2007.01681.x
  94. Zhang, S., Knight, T. J., Reecy, J. M., Wheeler, T. L., Shackelford, S. D., Cundiff, L.V., and Beitz, D. C. (2009) Associations of polymorphisms in the promoter I of bovine acetyl-CoA carboxylase-alpha gene with beef fatty acid composition. Anim. Genet. 41, 417-420.

Cited by

  1. Relationships between Single Nucleotide Polymorphism Markers and Meat Quality Traits of Duroc Breeding Stocks in Korea vol.29, pp.9, 2016, https://doi.org/10.5713/ajas.16.0158
  2. Evaluation of SCD, ACACA and FASN Mutations: Effects on Pork Quality and Other Production Traits in Pigs Selected Based on RNA-Seq Results vol.10, pp.1, 2011, https://doi.org/10.3390/ani10010123