
 Cong Jie Ng, et al.: IMPROVING THE RENDERING SPEED OF 3D MODEL ANIMATION ON SMART PHONES 266

Abstract— The advancement of technology enables

smart phones or handheld devices to render complex 3D

graphics. However, the processing power and memory of

smart phones remain very limited to render high

polygon and details 3D models especially on games

which requires animation, physic engine, or augmented

reality. In this paper, several techniques will be introduced

to speed up the computation and reducing the number of

vertices of the 3D meshes without losing much detail.

Index Terms — 3D model animation, Bump Mapping,

Level of details (LOD), Graphic Processing Unit (GPU),

Keyframe Tweening, Vertex Shader, Vertex Skinning.

I. INTRODUCTION

WITH the advent of handheld devices such as smart

phones and tablet, 3D graphic especially 3D games

become more complex which requires high quality 3D

graphics and some require physics or augmented reality.

The augmented reality and physics engine require

intensive computational processing power. It may lead to

low 3D animation rendering frame rate. The increasing of

complexity in the game requires more processing power

and memory.

To render animation of 3D model, the position and

normal vector of the vertices of the mesh have to be

updated in every frame by using interpolation between

keyframes also known as tweening or vertex skinning for

skeletal 3D model [1]. It consumes more computational

power as the number of vertices in the 3D mesh increases.

Not to mention the increasing of number of 3D meshes.

Furthermore, the 3D model which directly ported from

PC version usually has very high number of vertices.

They require more storage and memory. In addition, they

require more processing power to compute the animation.

It turns out to be unnecessary, because the screen size is

smaller as compared to PC and laptop to notice the fine

detail of 3D model.

In this paper, techniques to improve the rendering

speed such as utilizing Graphic Processing Unit (GPU),

reducing the number of vertices of 3D model without

losing too much detail, and level of details of 3D model

will be introduced.

II. THE TECHNIQUES

In this section, we will discuss about reducing the

memory usage and improving the rendering speed of

3D animation by using several techniques. Firstly, the

Graphic Processing Unit (GPU) will be introduced to

process the vertices to speed up the rendering. Then,

level of details (Lod) of 3D mesh will be discussed to

reduce the number of vertices to be processed. And

lastly, lighting optimization by using Bump Mapping to

maintain the 3D model detail by reducing the number of

vertices without much detail lost.

A. Graphic Processing Unit (GPU)

As the 3D model is animating, each of the vertices has

to be processed to update its position and normal vector.

In character animation, there are two common techniques

which are vertex skinning for skeletal animation and

keyframe tweening for per-vertex level animation.

Skeletal animation relies on joints’ position and

orientation. Each of the vertices will be influenced by the

weighted joints. As for keyframe tweening, it relies on

pre-animated keyframe. The keyframe defines the starting

point and ending point of the vertices. Interpolations are

required to update the intermediate vertices position and

normal vector between 2 keyframes [1].

The computation of vertex skinning and interpolation of

vertex can be parallelized easily because each of the

vertices does not depend on each other. So GPU can be

used to parallelize the problem instead of using CPU to

compute sequentially. By using this method, not only can

speed up the processing by parallelize the problem, it also

reduces the memory transfer between main memory and

GPU memory as memory transfer causes big overhead to

the process.

1) Vertex Skinning on GPU

In vertex skinning, the animation is based on the bone

also known as skeletal animation. Each of the vertices

position and normal vector will be calculated base on the

orientation and position of the influencing bone. To

Improving the Rendering Speed of 3D Model
Animation on Smart Phones

Cong Jie Ng, Gi-Hyun Hwang, and Dae-Ki Kang, Member, KIMICS

Manuscript received April 26, 2011; revised May 19, 2011; accepted

June 1, 2011.
Cong Jie Ng is a final year undergraduate student in computer science

from Multimedia University, Malaysia (Email: ncjlee78@gmail.com)
Gi-Hyun Hwang is with the Division of Computer and Information

Engineering, Dongseo University University, Busan, 617-716, Korea
(Email: hwanggh@gdsu.dongseo.ac.kr)
Dae-Ki kang (corresponding author) is with the Division of Computer

and Information Engineering, Dongseo University University, Busan,
617-716, Korea (Email: dkkang@dongseo.ac.kr)

INTERNATIONAL JOURNAL OF KIMICS, VOL. 9, NO. 3, JUNE 2011 267

perform the vertex skinning on GPU, the bone matrices

can be calculated by using CPU and it will be sent to GPU

in every frame to process the vertices [2]. The bone

matrices contains transformation matrix of every bone of

the skeletal model. While processing the vertices, the

GPU will refer to the corresponding bone matrix that

influence the vertex and compute the position and normal

vector of each of the vertices.

Fig. 1. Vertex skinning.

Vertices will be updated base on the bones (white color).

Each of the vertices will be influenced by one or more

bones base on the influencing weight. The model is

created by using MakeHuman, the bone specification is

based on H-Anim and it is loaded by using Cald3D library

[3-5].

Fig. 2. Illustration of the keyframe tweening on GPU. Two

keyframes are sent to GPU to be interpolated in

between t0 and t1.

2) Keyframe Tweening on GPU

As the Keyframe defines the starting point and ending

point of each of the vertex, it is reasonable to let the GPU

to do the work to interpolate the position of the vertex

until the next keyframe. It can be processed on GPU by

sending 2 consecutive keyframes into the GPU in every

transition of keyframes. During the interpolation time, it

can reduce the CPU workload until the next keyframe.

This illustrated in figure 2.

3) Application on device in practice

The latest version of OpenGL ES which is version 2.x

supports programmable graphic pipeline which runs on

GPU and can be programmed by using GLSL language

[6]. We can utilize vertex shader to process the vertices.

The GLSL language supports a number of fast built-in

functions for mathematic and geometry computation. One

of the built-in function can be used to do linear

interpolation for keyframe tweening is “genType

mix(genType x, genType y, genType a)” [7]. The equation

1 denotes equation of linear interpolation. It can be

computed by using the GLSL code 1 where p, p0, p1 and t

denote interpolated position, keyframe 1, keyframe 2 and

time factor respectively. This approach is recommended

by Khronos Group as it may be optimized for certain

hardware [8].

 � � ��. �1 � 	
 � ��. 	 Equation (1)

 � � �
���0, �1, 	
; GLSL code (1)

Unfortunately, not all devices support OpenGL ES 2.0.

An alternative to this is OpenGL ES 1.1

GL_MATRIX_PALETTE extension which uses GPU [8].

Again it has a lot of limitations. It can be used in vertex

skinning, but it cannot be used on keyframe tweening as

the interpolation does not require transformation matrix.

The number of supported joints per vertex skinning and

number of supported palette matrices are limited to a

certain number base on hardware specification. The

number of palette matrices can be regarded as number of

bones supported. For Samsung Galaxy S it only supports

up to 4 joints per vertex and 32 palette matrices and for

iPhone 3Gs it supports 4 vertex unit and 11 palette

matrices [2]. It is useless if the skeletal 3D model is

complex which the vertex requires more than the

maximum number of supported influencing joint.

The number of supported Vertex Unit can be checked

by querying GL_MAX_VERTEX_UNITS_OES and the

palette matrices can be checked by querying

GL_MAX_PALETTE_MATRICES_OES. If the number

of bones is more than the maximum supported palette

matrices, it can be solved by performing the same process

for more than 1 passes [2]. However, if the required

vertex unit is more than the maximum supported value,

we have to use CPU instead with several optimizations

such as using fixed point operation and memory copy

 Cong Jie Ng, et al.: IMPROVING THE RENDERING SPEED OF 3D MODEL ANIMATION ON SMART PHONES 268

operation on native code for Android device [9].

B. Level of Details (LOD)

Level of details is very useful in speeding up the 3D

rendering when the scene contains a lot of 3D meshes. It

is used to manage the level of details of 3D meshes on

different distance. As the distance between the object and

viewport is getting further, it’s reasonable to render the

object with less detail because the details are too small for

a pixel to render, and it is not noticeable [10]. By using

this method, we can reduce the work of the rendering

pipeline and reduce the number of vertices to be

processed for animation purposes as discussed in previous

technique.

 There are mainly two types of managing level of

details, discrete level of details and continuous level of

details [10]. The discrete level of details is a traditional

yet simple approach. It creates multiple version of the 3D

model with different level of details from coarse to more

complex. These 3D models are generated during offline

process. It can be either created by using 3D modeling

software or algorithm to simplify the 3D model into

multiple version of LOD. The 3D model will be chosen

based on the distance from viewport [11]. Apart from its

simplicity, this approach requires more memory to store

the 3D models of different LOD and the granularity of

LOD is low.

As for continuous LOD, instead of generating several

versions of LOD of the 3D mesh, the mesh is simplified

during runtime. This approach can save memories by

freeing up the unneeded vertices based on the level of

details to allow more memory to load more meshes [10].

It also saves the space of storing the preprocessed meshes,

which can further reduce the size of the installation file of

the program or game. The number of polygon can be

reduced linearly proportion to the distance between

viewport. The model simplification is based on data

structure of storing the 3D meshes. There are many

techniques to simplify the 3D meshes based on local

simplification operators. One of the operator calls Edge

collapse, which proposed by Hoppe. This operators

collapse an edge to a single vertex [12].

Figure 3 illustrates the Continuous LOD. On the left the

LOD is 100% which is the original model, on the right is

the simplified model with LOD 20% and the vertices is

further reduced on runtime. This picture is taken from the

screen shoot of Cal3D Library Sample Program [5].

1) Application of LOD on device in practice

One of the Open source libraries that support

continuous LOD is Cal3D library. This library is widely

used in games, as well as in researches. It is an open

source 3D character animation library for skeletal model

animation [5]. It is developed on C++, so it can be easily

ported into smart phone platform like Android and Apple.

In Android, it can be compiled by using Android NDK

revision r5 with the variable APP_STL in Application.mk

file set to stlport_static to support C++ STL because the

library uses C++ STL library [13]. As for Apple it can be

ported by using Objective C++ it supports C++ STL too

[14].

Fig. 3. Illustration of Continuous LOD.

C. Bump Mapping

It would be nice if we are able to render high resolution

3D meshes without system slowing down. But it is not

practical especially on smart mobile devices with slower

processing power and limited memory. By using bump

mapping, we are able to render low polygon with visually

high resolution 3D model as illustrated in figure 4. A 3D

model with low polygon looks as if made of very high

number of polygon. By using this technique, we can

reduce the number of vertices without losing much detail

and it in turn speed up the rendering and save the memory.

It is especially useful if the surface is bumpy, such as a

brick wall or a wooden wall. This technique is widely use

in PC and console games. It was popularized by Doom 3,

which uses low polygon mesh to achieve high resolution

appearance [15].

Figure 4 illustrates bump mapping on a low polygon

3D mesh and a production a high resolution appearance

3D mesh. The 3D model is taken from Doom3, ID

software [15] without texturing, and it is rendered on

Samsung Galaxy S.

The bump mapping does not change the shape or the

structure of the 3D model, the silhouette of the 3D model

remains the same. The only thing has been changed is the

per-pixel lighting. It simulates the lighting by irregulating

the normal vector. It was first introduced by Blinn in year

1978 [16]. Rendering the bumpy surface geometrically

will be impractical as it requires a very high resolution of

3D mesh. A bumpy brick wall can be achieved with a flat

plane and a bump map. The bump map stores the normal

value of the mesh surface as an image representing by

INTERNATIONAL JOURNAL OF KIMICS, VOL. 9, NO. 3, JUNE 2011 269

Red Green and Blue, axis x, y, and z respectively. The

normal value can be either in tangent space or object

space. Tangent space is the local space of the particular

point on a surface. Tangent space bump map requires

more computational steps to calculate the tangent and

binormal. These vectors are used to transform the light

direction and view direction into tangent space in every

frame. It is required for the shading function to calculate

the final color [2]. Although object space bump mapping

is faster since no extra computation is needed, it is not

suitable for deformable 3D model. It works well for static

model. Hence tangent space bump map will be the choice

of deformable 3D mesh.

Fig. 4. Bump mapping on a low polygon 3D mesh and

production of a high resolution appearance 3D

mesh.

1) Application of Bump Mapping in Practice

To use bump mapping, we need a normal map of the

3D model as shown in figure 4, the bluish color image.

There are many tools available that simplify the work to

generate the bump map, such as NVIDIA Melody and

XNormal. To generate the bump map, two 3D models

with one high resolution version and another low

resolution model are needed [17, 18].

As for the implementation of loading bump map into a

3D model, it can be done by using OpenGL ES 2.0 and

OpenGL ES 1.1. OpenGL ES 2.0 supports programmable

shader by using GLSL language. There are 2 types of

shader in GLSL, which are vertex shader and fragment

shader [7]. Bump mapping can be done on fragment

shader to compute the pixel color based on Phong

Shading model or Blinn-Phong Shading model by

applying the obtained normal vector from bump map on

the calculation of Lambertian reflectance of the diffuse

parameter [16].

As for OpenGL ES 1.1, it does not support

programmable shader instead it used fixed function

pipeline [6]. So another approach has to be used. It’s the

same as explained in previous paragraph just that it is less

control over other lighting parameter. We have to

calculate the Lambertian reflectance to irregulate the

diffuse lighting. The calculation of lambertian reflectance

requires dot product of the surface normal vector and the

light direction. This operation can be done by using

GL_DOT3_RGB operation on glTexEnvf parameter with

the bump map as first argument, and light direction as

second argument [2]. The dot product operation on GLSL

can be done in one line of code. On the other hand,

OpenGL ES 1.1 needs 6 lines of codes to accomplish the

same operation.

III. CONCLUSIONS

Although, the smart phones today is getting more

powerful which supports duo core processors and high

end graphic chipset, optimizations are needed as the

demand of graphical effects and complexity of the 3D

game increase. This paper presents several techniques to

reduce the memory usage and speed up the rendering

process with practical approaches which support most

today smart phones such as Android OS and Apple IOS

platform. This is required to gain better performance and

higher complexity of the 3D graphic animation. As for the

implementation, OpenGL ES 2.x supports programmable

graphic pipeline. It is advisable to develop on OpenGL ES

2.x instead of older version of OpenGL ES if the game or

3D graphics require complex and high resolution 3D

model and effects. Since more hardware today supports

OpenGL ES 2.x. It is a good start for future graphic

programming on smart phone devices and the

programmable graphic pipeline provides more flexibility

over the fix function pipeline.

ACKNOWLEDGMENT

This research was conducted in TPR3311 industrial

training program of Multimedia University, Malaysia and

was supported by Business for Academic-industrial

Cooperative establishments funded Korea Small and

Medium Business Administration in 2010. (Grants No.

00040456)

REFERENCES

[1] D. Gosselin (2002), Character Animation with Direct3D Vertex

Shaders. Shader, Wordware Inc.
[2] P. Rideout, iPhone 3D Programming - Developing Graphical

Applications with OpenGL ES. O'Reilly, 2009.

 Cong Jie Ng, et al.: IMPROVING THE RENDERING SPEED OF 3D MODEL ANIMATION ON SMART PHONES 270

[3] MakeHuman. (n.d.). Open Source tool for making 3D Characters
[Online]. Available: http://www.makehuman.org/

[4] Humanoid Animation Working Group. (2011, April 22). H-Anim
[Online]. Available: http://www.h-anim.org/ .

[5] Cal3D. (2006, Jun). 3D Character Animation Library[Online].
Available: http://home.gna.org/cal3d/ .

[6] M. Segal and K. Akeley, The OpenGL Graphic System A
Specification. p. 354, October 22, 2004.

[7] R. J. Simpson, and J. Kessenich, The OpenGL ES Shading
Language. p. 72, May 12, 2009.

[8] Khronos Group (2011, March 19), GLSL: common mistakes [Online].
Available:: http://www.opengl.org/wiki/GLSL_:_common_mistakes

[9] C. J., Ng., “Speeding up the 3D model renderin on Android
Device,” Proc. 35th Korea Information Processing Society

Conference, May 2011
[10] D. Luebke, et al., Level of Detail for 3D Graphics. Elsevier

Science, 2002.
[11] J. H. Clark, “Hierarchical geometric models for visible surface

algorithms,” Communications of the ACM, vol. 19, no. 10, pp. 547-
554, 1976.

[12] H. Hoppe, “Progressive meshes,” Proc. ACM SIGGRAPH 1996,

pp. 99-108, 1996.
[13] Google Inc. (2011, January). Android NDK [Online]. Available:

http://developer.android.com/sdk/ndk/index.html .
[14] Apple Inc. (n.d.). Options Controlling Objective-C and Objective-

C++ Dialects [Online]. Available::
http://developer.apple.com/library/mac/#documentation/Developer
Tools/gcc-4.0.1/gcc/.

[15] ZeniMax Media Inc. (n.d.). Doom 3 [Online]. Available:
http://idsoftware.com/games/doom/doom3/.

[16] J. F. Blinn, “Simulation of Wrinkled Surfaces,” Computer

Graphics, vol. 12, no. 3, pp. 286-292, August 1978.
[17] NVIDIA Corporation. (n.d.). NVIDIA Melody [Online]. Available:

http://www.nvidia.com/object/melody_home.html.
[18] Santiago Orgaz & co. (2011, February 9). xN bakes your maps!

[Online]. Available: http://www.xnormal.net.

Cong Jie Ng is a final year undergraduate
student in computer science from Multimedia
University, Malaysia in 2011. He has been
actively participated various programming
contests in Asia regional level and national
level, and earned good ranking in national level.
His interests include parallel processing, 3D
computer graphics, computer vision and
machine learning.

Gi-Hyun Hwang received his M.S. and Ph.D.
in Electrical Engineering, Pusan National
University. Recently, he is a Ph.D. He is
currently a professor at Dongseo University.
His research interested lies in applications of
intelligent control to power system, RFID, and
Embedded System. E-mail: hwanggh@gdsu.
dongseo.ac.kr

Dae-Ki Kang is an assistant professor at
Dongseo University in South Korea. He was a
senior member of engineering staff at the
attached Institute of Electronics &
Telecommunications Research Institute in
South Korea. He earned a PhD in computer
science from Iowa State University in 2006.
His research interests include social network
services, machine learning, relational learning,
statistical graphical models, metaheuristics,

ontology learning, Tower of Hanoi, multimedia systems, intrusion
detection, Web firewall, and computer vision. Prior to joining Iowa State,
he worked at a Bay-area startup company and at Electronics and
Telecommunication Research Institute in South Korea. He received a
science master degree in computer science at Sogang University in 1994
and a bachelor of engineering (BE) degree in computer science and
engineering at Hanyang University in 1992.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /AmeriGarmnd-BT
 /AmeriGarmnd-BTBold
 /AmeriGarmnd-BTBoldItalic
 /AmeriGarmnd-BTItalic
 /Baskerville-BT
 /BernhardFashion-BT
 /Blippo-BlkBT
 /Bodoni-BdBT
 /Bodoni-BdBTItalic
 /Bodoni-BkBT
 /Bodoni-BkBTItalic
 /BroadwayEngraved-BT
 /BrushScript-BT
 /CentSchbook-BT
 /CentSchbook-BTBold
 /CentSchbook-BTBoldItalic
 /CentSchbook-BTItalic
 /CommercialScript-BT
 /Cooper-BlkBT
 /Cooper-BlkBTItalic
 /Courier10-BTBold
 /Courier10-BTBoldItalic
 /DomCasual-BT
 /Freehand591-BT
 /FuturaBlack-BT
 /FZWBFW--GB1-0
 /FZXKJW--GB1-0
 /GoudyOlSt-BT
 /GoudyOlSt-BTBold
 /GoudyOlSt-BTBoldItalic
 /GoudyOlSt-BTItalic
 /H_CIRNUM
 /H_EQSYM1
 /H_EQSYM2
 /H_HEBREW
 /H_KEYBD
 /H_MULTI1
 /H_MULTI2
 /H_PROSYM
 /HighlightLetPlain
 /Hobo-BT
 /JohnHandyLetPlain
 /LaBambaLetPlain
 /Liberty-BT
 /MBatang
 /MDotum
 /MekanikLetPlain
 /MGungHeulim
 /MGungJeong
 /MJemokBatang
 /MJemokGothic
 /MSugiHeulim
 /MSugiJeong
 /MurrayHill-BdBT
 /Newtext-BkBT
 /OCR-A-BT
 /OCR-B-10-BT
 /OdessaLetPlain
 /OrangeLetPlain
 /Orator10-BT
 /ParkAvenue-BT
 /PumpDemiBoldLetPlain
 /QuixleyLetPlain
 /RuachLetPlain
 /SandSm
 /SandTm
 /ScruffLetPlain
 /Swis721-BT
 /Swis721-BTItalic
 /TirantiSolidLetPlain
 /UniversityRomanLetPlain
 /VictorianLetPlain
 /WestwoodLetPlain
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

