참고문헌
- Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11:391-401.
- Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 2003;14:251-62. https://doi.org/10.1034/j.1600-0501.2003.00972.x
- Albrektsson T, Wennerberg A. Oral implant surfaces: Part 2. Review focusing on clinical knowledge of different surfaces. Int J Prosthodont 2004;17:544-64.
- Esposito M, Coulthard P, Thomsen P, Worthington HV. The role of implant surface modifications, shape and material on the success of osseointegrated dental implants: a Cochrane systematic review. Eur J Prosthodont Restor Dent 2005;13:15-31.
- Puleo DA, Thomas MV. Implant surfaces. Dent Clin North Am 2006;50:323-38. https://doi.org/10.1016/j.cden.2006.03.001
- Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 2005; 74:49-58.
- Cooper LF, Masuda T, Yliheikkila PK, Felton DA. Generalizations regarding the process and phenomenon of osseointegration: Part II. In vitro studies. Int J Oral Maxillofac Implants 1998;13:163-74.
- Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21:667-81. https://doi.org/10.1016/S0142-9612(99)00242-2
- Kieswetter K, Schwarts Z, Dean DD, Boyan BD. The role of implant surface characteristic in the healing of bone. Crit Rev Oral Biol Med 1996;7:329-45. https://doi.org/10.1177/10454411960070040301
- Thomas KA, Cook SD. An evaluation of variables influencing implant fixation by direct bone apposition. J Biomed Mater Res 1985;19:875-901. https://doi.org/10.1002/jbm.820190802
- Predecki P, Stephan JE, Auslaender BA, Mooney VL, Kirkland K. Kinetics of bone growth into cylindrical channels in aluminum oxide and titanium. J Biomed Mater Res 1972;6:375-400. https://doi.org/10.1002/jbm.820060506
- Carlsson L, Rostlund T, Albrektsson B, Albrektsson T. Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 1988;3:21-4.
- Lauer G, Wiedmann-Al-Ahmad M, Otten JE, Hubner U, Schmelzeisen R, Schilli W. The titanium surface texture effects adherence and growth of human gingival keratinocytes and human maxillar osteoblast-like cells in vitro. Biomaterials 2001;22: 2799-809. https://doi.org/10.1016/S0142-9612(01)00024-2
-
Mustafa K, Wennerberg A, Wroblewski J, Hultenby K, Lopez BS, Arvidson K. Determining optimal surface roughness of
$TiO_{2}$ blasted titanium implant material for attachment, proliferation, and differentiation of cells derived from human mandibular alveolar bone. Clin Oral Implants Res 2001;12:515-25. https://doi.org/10.1034/j.1600-0501.2001.120513.x - Ellingsen JE, Johansson CB, Wennerberg A, Holmen A. Improved retention and bone-to implant contact with fluoridemodified titanium implants. Int J Oral Maxillofac Implants 2004;19:659-66.
- Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, et al. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 2000;49:155-66. https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J
- Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21:667-81. https://doi.org/10.1016/S0142-9612(99)00242-2
- Wennerberg A, Albrektsson T, Andersson B. Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide. Int J Oral Maxillofac Implants 1996;11:38-45.
- Sader MS, Balduino A, Soares Gde A, Borojevic R. Effect of three distinct treatments of titanium surface on osteoblast attachment, proliferation, and differentiation. Clin Oral Implants Res 2005;16:667-75. https://doi.org/10.1111/j.1600-0501.2005.01135.x
- Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater 2008;4:535-43. https://doi.org/10.1016/j.actbio.2007.12.002
- Citeau A, Guicheux J, Vinatier C, Layrolle P, Nguyen TP, Pilet P, et al. In vitro biological effects of titanium rough surface obtained by calcium phosphate grit blasting. Biomaterials 2005;26:157-65. https://doi.org/10.1016/j.biomaterials.2004.02.033
- Sanz A, Oyarzun A, Farias D, Diaz I. Experimental study of bone response to a new surface treatment of endosseous titanium implants. Implant Dent 2001;10:126-31. https://doi.org/10.1097/00008505-200104000-00009
- Novaes AB Jr, Souza SL, de Oliveira PT, Souza AM. Histomorphometric analysis of the bone-implant contact obtained with 4 different implant surface treatments placed side by side in the dog mandible. Int J Oral Maxillofac Implants 2002;17:377-83.
- Ginsberg SD, Che S. Combined histochemical staining, RNA amplification, regional, and single cell cDNA analysis within the hippocampus. Lab Invest 2004;84:952-62. https://doi.org/10.1038/labinvest.3700110
- Hutton LC, Castillo-Melendes M, Smythe GA, Walker DW. Microglial activation, macrophage infiltration, and evidence of cell death in the fetal brain after uteroplacental administration of lipopolysaccharide in sheep in late gestation. Am J Obstet Gynecol 2008;198:e1-11.
- Engvall E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol 1980;70(A):419-39.
- Jones JV, Mansour M, James H, Sadi D, Carr RI. A substrate amplification system for enzyme-linked immunoassays: II. Demonstration of its applicability for measuring anti-DNA antibodies. J Immunol Methods 1989;118:79-84. https://doi.org/10.1016/0022-1759(89)90056-2
- Harada M, Hiraoka BY, Fukasawa K, Fukasawa KM. Purification and properties of bovine dental-pulp alkaline-phosphatase. Arch Oral Biol 1982;27:69-74. https://doi.org/10.1016/0003-9969(82)90179-0
- Jung K, Pergande M. Influence of inorganic phosphate on the activity determination of isoenzymes of alkaline phosphatase in various buffer systems. Clin Chim Acta 1980;102:215-9. https://doi.org/10.1016/0009-8981(80)90035-2
- Valarmathi MT, Yost MJ, Goodwin RL, Potts JD. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold. Biomaterials 2008;29:2203-16. https://doi.org/10.1016/j.biomaterials.2008.01.025
- Rausch-fan X, Qu Z, Wieland M, Matejka M, Schedle A. Differentiation and cytokine synthesis of human alveolar osteoblast compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dent Mater 2008;24:102-10. https://doi.org/10.1016/j.dental.2007.03.001
- Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin redbased assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 2004;329:77-84. https://doi.org/10.1016/j.ab.2004.02.002
- Malladi P, Xu Y, Chiou M, Giaccia AJ, Longaker MT. Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells. Am J Physiol Cell Physiol 2006;290:C1139-46. https://doi.org/10.1152/ajpcell.00415.2005
- Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 1983;96:191-8. https://doi.org/10.1083/jcb.96.1.191
- Bachle M, Kohal RJ. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin Oral Implants Res 2004;15:683-92. https://doi.org/10.1111/j.1600-0501.2004.01054.x
- Kim MJ, Choi MU, Kim CW. Activation of phospholipase D1 by surface roughness of titanium in MG63 osteoblast-like cell. Biomaterials 2006;27:5502-11. https://doi.org/10.1016/j.biomaterials.2006.06.023
- Schwartz Z, Lohmann CH, Oefinger J, Bonewald LF, Dean DD, Boyan BD. Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage. Adv Dent Res 1999;13:38-48. https://doi.org/10.1177/08959374990130011301
- Anselme K, Bigerelle M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater 2005;1:211-22. https://doi.org/10.1016/j.actbio.2004.11.009
- Kim MJ, Kim CW, Lim YJ, Heo SJ. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J Biomed Mater Res A 2006;79:1023-32.
- Wennerberg A, Albrektsson T, Andersson B. Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide. Int J Oral Maxillofac Implants 1996;11:38-45.
- Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 2001;22:87-96.
- Diniz MG, Pinheiro MA, Andrade Junior AC, Fischer RG. Characterization of titanium surfaces for dental implants with inorganic contaminant. Braz Oral Res 2005;19:106-11. https://doi.org/10.1590/S1806-83242005000200006
- Piattelli A, Degidi M, Paolantonio M, Mangano C, Scarano A. Residual aluminum oxide on the surface of titanium implants has no effect on osseointegration. Biomaterials 2003;24:4081-9. https://doi.org/10.1016/S0142-9612(03)00300-4
- Canabarro A, Diniz MG, Paciornik S, Carvalho L, Sampaio EM, Beloti MM, et al. High concentration of residual aluminum oxide on titanium surface inhibits extracellular matrix mineralization. J Biomed Mater Res A 2008;87A:588-97. https://doi.org/10.1002/jbm.a.31810
- Rodrigo A, Valles G, Saldanna L, Rodriguez M, Martinez ME, Munuera L, et al. Alumina particles influence the interactions of cocultured osteoblasts and macrophages. J Orthop Res 2006;24:46-54. https://doi.org/10.1002/jor.20007
- Wennerberg A, Albrektsson T, Johansson C, Andersson B. Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials 1996;17:15-22. https://doi.org/10.1016/0142-9612(96)80750-2
- Li LH, Kong YM, Kim HW, Kim YW, Kim HE, Heo SJ, Koak YK. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004;25:2867-75. https://doi.org/10.1016/j.biomaterials.2003.09.048
- Giordano C, Sandrini E, Busini V, Chiesa R, Fumagalli G, Giavaresi G, et al. A new chemical etching process to improve endosseous implant osseointegration: in vitro evaluation on human osteoblast-like cells. Int J Artif Organs 2006;29:772-80. https://doi.org/10.1177/039139880602900807
- Xavier SP, Carvalho PS, Beloti MM, Rosa AL. Response of rat bone marrow cells to commercially pure titanium submitted to different surface treatments. J Dent. 2003;31:173-80. https://doi.org/10.1016/S0300-5712(03)00027-7
- Schneider GB, Perinpanayagam H, Clegg M, Zaharias R, Seabold D, Keller J, et al. Implant surface roughness affects osteoblast gene expression. J Dent Res 2003;82:372-6. https://doi.org/10.1177/154405910308200509
- Schneider GB, Whitson SW, Cooper LF. Restricted and coordinated expression of beta3-integrin and bone sialoprotein during cultured osteoblast differentiation. Bone 1999;24:321-7. https://doi.org/10.1016/S8756-3282(99)00007-1
- Schneider GB, Zaharias R, Seabold D, Keller J, Stanford C. Differentiation of preosteoblasts is affected by implant surface microtopographies. J Biomed Mater Res A 2004;69:462-8.
- Schneider GB, Zaharias R, Stanford C. Osteoblast integrin adhesion and signaling regulate mineralization. J Dent Res 2001;80:1540-4. https://doi.org/10.1177/00220345010800061201
피인용 문헌
- Antibacterial efficacy of triple-layered poly(lactic-<i>co</i>-glycolic acid)/nanoapatite/lauric acid guided bone regeneration membrane on periodontal bacteria vol.36, pp.3, 2017, https://doi.org/10.4012/dmj.2016-177
- Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface vol.399, pp.None, 2011, https://doi.org/10.1016/j.apsusc.2016.12.105
- In Vitro Evaluation of Osteoblast Response to the Effect of Injectable Platelet-rich Fibrin Coating on Titanium Disks vol.22, pp.2, 2011, https://doi.org/10.5005/jp-journals-10024-3039
- Local tissue effects and peri‐implant bone healing induced by implant surface treatment: an in vivo study in the sheep vol.56, pp.4, 2011, https://doi.org/10.1111/jre.12878
- Architectural bone parameters and the relationship to titanium lattice design for powder bed fusion additive manufacturing vol.47, pp.None, 2011, https://doi.org/10.1016/j.addma.2021.102273