A Study on the Physical Properties of Poly(lactic acid) Fabric with Different Heat Treatment Conditions

열처리 조건이 다른 Poly(lactic acid)(PLA) 직물의 물성 연구

  • Received : 2011.01.31
  • Accepted : 2011.03.24
  • Published : 2011.04.28

Abstract

The effect of heat setting and subsequent dyeing on the mechanical properties of poly(lactic acid)(PLA) fabrics was investigated, including the amount of pilling and "Year resistance. The PLA fabric exhibits significantly reduced tear strength as well as pilling and wear resistance as the heat setting temperature and time increase. While the tensile strength decreased above a setting temperature of $120^{\circ}C$, surprisingly the tensile strength of the set PLA fabric did increase slightly as the setting temperature was increased to values below $120^{\circ}C$, After dyeing, the other mechanical properties, pilling, and wear resistance of the PLA fabrics exhibited similar behaviors to the heat setting treatment. From these results, the heat treatment conditions of PLA fabric should be carefully decided to avoid the deteriorating effects on PLA fabrics.

Keywords

Acknowledgement

Grant : 섬유산업스트림간 협력기술개발사업

Supported by : 지식경제부

References

  1. G. Scoot and D. Gilead, Eds., "Biodegradable Polymers. Principles and Application", Chapman & Hall, London, 1995, pp.43-87.
  2. J. O. Hollinger, Ed., "Biomedical Application of Synthetic Biodegradable Polymers", CRC Press, NY, 1995.
  3. M. H. Hartmann in "Biopolymers from Renewable Resources", D. L. Kaplan Ed., Springer-Verlag, Berlin, 1998, Chap. 15, pp.367-411.
  4. J. R. Dorgan, H. J. Lehermeier, L.-I. Palade, and J. Cicero, "Polylactidcs: Properties and Prospects of an Environmentally Benign Plastic from Renewable Resources", Macromolecular Symposia, 2001, 175, 55-66. https://doi.org/10.1002/1521-3900(200110)175:1<55::AID-MASY55>3.0.CO;2-K
  5. R. E. Drumright, P. R. Gruber, and D. E. Henton, "Polylactic Acid Technology", Adv Mater, 2000, 12, 1841-1846. https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  6. Y. Ikada and H. Tsuji, "Biodegradable Polyesters for Medical and Ecological Applications", Macromol Rapid Commun, 2000, 21, 117-132. https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X
  7. B. Gupta, N. Revagade, and J. Hilborn, "Poly(lactic acid) Fiber: An Overview", Prog Polym Sci, 2007, 32, 455-482. https://doi.org/10.1016/j.progpolymsci.2007.01.005
  8. J. A. Cicero, J. R. Dorgan, J. Janzen, J. Garrett, J. Runt, and J. S. Lin, "Supramolecular Morphology of Two-step, Melt-spun Poly(lactic acid) Fibers", J Appl Polym Sci, 2002, 86, 2839-2846. https://doi.org/10.1002/app.11268
  9. L. Fambri, A. Pegoretti, R. Fenner, S. D. Incardona, and C. Migliaresi, "Biodegradable Fibers of Poly(l-lactic acid) Produced by Melt Spinning", Polymer, 1997, 38, 79-85. https://doi.org/10.1016/S0032-3861(96)00486-7
  10. K. Mezghani and J. E. Spruiell, "High Speed Spinning of Poly(l-lactic acid) Filaments", J Polym Sci B: Polym Phys, 1998, 36, 1005-1012. https://doi.org/10.1002/(SICI)1099-0488(19980430)36:6<1005::AID-POLB9>3.0.CO;2-V
  11. K. Jamshidi, S. H. Hyon, and Y. Ikada, "Thermal Characterization of Polylactides", Polymer, 1988, 29, 2229-2234. https://doi.org/10.1016/0032-3861(88)90116-4
  12. Y. Ikada and H. Tsuji, "Biodegradable Polyesters for Medical and Ecological Applications", Macromol Rapid Commun, 2000, 21, 117-132. https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X