Electrical Property of Polypyrrole/MWCNT-g-PSSA Composite

PolypyrroleIMWCNT-g-PSSA 복합체의 전기적 특성

  • Lim, Tae-Hwan (Department of Organic and Nano Engineering, College of Engineering, Hanyang University) ;
  • Oh, Kyung-Wha (Department of Home Economics Education, Chung-Ang University)
  • 임태환 (한양대학교 유기나노공학과) ;
  • 오경화 (중앙대학교 가정교육학과)
  • Received : 2010.12.30
  • Accepted : 2011.01.26
  • Published : 2011.02.28

Abstract

Poly(styrene sulfonic acid) (PSSA) was grafted onto the surface of multiwall carbon nanotubes (MWCNTs) using radical polymerization to assist the dispersion of MWCNTs before the polymerization of pyrrole. MWCNT-g-PSSA exhibited a higher dispersity in an aqueous solution compared with conventionally used carboxylated MWCNTs (c-MWCNTs), therefore, this composite acts as an excellent template for the high polymerization yield ofPolypyrrole (PPy). The measured polymerization yield was 95.5%, and its value was higher than that of PPy/c-MWCNT (61.8%). Consequently, the conductivity of the PPyIMWCNT-g-PSSA composite reached 124 S/cm, and this value was also higher than that of the PPy/c-MWCNT composite (48 S/cm) or PPylMWCNT doped with PSSA (91 S/cm). p-Toluenesulfonic acid (TSA)IHCI was selected as an additional dopant mixture to improve the electrical properties of the composite. As a result, the conductivity value of the composite improved to approximately 152 S/cm. The electrochemical and thermal stability were evaluated by cyclic voltammetry and environmental stability testing. Overall, PPy/MWCNT-g-PSSA had good electrical and mechanical properties that are desired for materials of various electric devices.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. J. H. Lee and H. T. Jung, "Carbon Nanotube Composites Based Energy Storage/Conversion Devices", Polym Sci Technol, 2007, 18, 535-541.
  2. J. H. Han, "Current Status on Synthesis of Carbon Nanotubes and Their Applications to Conducting Polymer", Polym Sci Technol, 2005, 16, 162-175.
  3. B. G. Min, "R&D Trend of CNT/Polymer Nanocomposites", Polym Sci Technol, 2005, 16, 176-188.
  4. J. Li, L. Hu, L. Wang, Y Zhou, G Grulner, and T. J. Marks, "Organic Light-Emitting Diodes Having Carbon Nanotube Anodes", Nano Lett, 2006, 6, 2472-2477. https://doi.org/10.1021/nl061616a
  5. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, "Carbon Nanotube-polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties", Progr Polym Sci, 2010, 35, 357-401. https://doi.org/10.1016/j.progpolymsci.2009.09.003
  6. D. K. Kim, K. W. Oh, and S. H. Kim, "Synthesis of Conducting Composite of Polyaniline and Multi Wall Carbon Nanotube Grafted with Sulfonated Polystyrene", Mol Cryst Liq Cryst, 2009, 510, 51-59.
  7. K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, and Y. H. Lee, "High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole", J Electrochem Soc, 2002, 149, 1058-1062. https://doi.org/10.1149/1.1491235
  8. Korea Institute of Science and Technology Information, "Dispersion of Carbon Nanotube", ISBN 89-5884-318-7 93570, 2005, pp.5-21.
  9. G. R. Park, J. S. Kim, and Y. J. Jeong, "Comparison of Characteristics of Multi-walled Carbon Nanotubes Functionalized Using Various Methods", Text Sci Eng, 2008, 45, 359-363.
  10. D. K. Kim, K. W. Oh, and S. H. Kim, "Synthesis of Polyaniline/Multiwall Carbon Nanotube Composite via Inverse Emulsion Polymerization", J Polym Sci: Part B: Polym Phys, 2008, 46, 2255-2266. https://doi.org/10.1002/polb.21557
  11. V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, J. Schmidt, and Y Talmon, "Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants", Nano Lett, 2003, 3, 1379-1382. https://doi.org/10.1021/nl034524j
  12. S. Qin, D. Qin, W. T. Ford, J. E. Herrera, D. E. Resasco, S. M. Bachilo, and R. B. Weisman, "Solubilization and Purification of Single-Wall Carbon Nanotubes in Water by in Situ Radical Polymerization of Sodium 4-Styrenesulfonate", Macromolecules, 2004, 37, 3965-3967. https://doi.org/10.1021/ma049681z
  13. M. S. P. Shaffer and K. Koziol, "Polystyrene Grafted Multi-walled Carbon Nanotubes", Chem Comm, 2002, 2074-2075.
  14. T. M. Wu, H. L. Chang, and Y W. Lin, "Synthesis and Characterization of Conductive Polypyrrole/multi-walled Carbon Nanotubes Composites with Improved Solubility and Conductivity", Compos Sci Technol, 2009, 69, 639-644. https://doi.org/10.1016/j.compscitech.2008.12.010
  15. V. Georgakilas, P. Dallas, D. Niarchos, N. Boukos, and C. Trapalis, "Polypyrrole/MWNT Nanocomposites Synthesized Through Interfacial Polymerization", Synthetic Metals, 2009, 159, 632-636. https://doi.org/10.1016/j.synthmet.2008.12.007
  16. R. Patel, S. J. Im, Y T Ko, J. H. Kim, and B. R. Min, "Preparation and Characterization of Proton Conducting Polysulfone Grafted Poly(styrene sulfonic acid) Polyelectrolyte Membranes", J Ind Eng Chem, 2009, 15, 299-303. https://doi.org/10.1016/j.jiec.2008.12.011
  17. R. K. Sharma, A. Karakoti, S. Seal, and L. Zhai, "Multiwall Carbon Nanotube-poly(4-styrenesulfortic acid) Supported Polypyrrole/manganese Oxide Nano-composites for High Performance Electrochemical Electrodes", Journal of Power Sources, 2010, 195, 1256-1262. https://doi.org/10.1016/j.jpowsour.2009.08.093
  18. K. W. Oh, H. J. Park, and S. H. Kim, "Electrical Property and Stability of Electrochemically Aynthesized Polypyrrole Films", J Appl Polym Sci, 2004, 91, 3659-3666. https://doi.org/10.1002/app.13603
  19. S. H. Kim, J. H. Seong, and K. W. Oh, "Effect of Dopant Mixture on the Conductivity and Thermal Stability of Poryaniline/Nomex Conductive Fabric", J Appl Polym Sci, 2002, 83, 2245-2254. https://doi.org/10.1002/app.10211
  20. Y H. Lee, J. Y Lee, and D. S. Lee, "A Novel Conducting Soluble Polypyrrole Composite with a Polymeric Codopant", Synthetic Metals, 2000, 114, 347-353. https://doi.org/10.1016/S0379-6779(00)00268-X
  21. S. Masubuchi, S. Kazama, R. Matsushita, and T. Matsuyama, "The Influence of Dopant Species on Transport Properties in As-grown Polypyrrole Films Prepared by Electrochemical Method", Synthetic Metals, 1995, 69, 345-346. https://doi.org/10.1016/0379-6779(94)02478-H
  22. K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, and Y. H. Lee, "High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-walled Carbon Nanotube and Polypyrrole", J Electrochem Soc, 2002, 149, 1058-1062. https://doi.org/10.1149/1.1491235
  23. E. Frackovviak, K. Jurewicz, S. Delpeux, and F. Beguin, "Nanotubular Materials for Supercapacitors", J Power Sources, 2001, 97-98, 822-825. https://doi.org/10.1016/S0378-7753(01)00736-4