DOI QR코드

DOI QR Code

Survey for Early Detection Techniques of Smoke and Flame using Camera Images

카메라 영상을 이용한 연기 및 화염의 조기 감지 최신 연구 동향

  • Kang, Sung-Mo (School of Electrical Engineering, University of Ulsan) ;
  • Kim, Jong-Myon (School of Electrical Engineering, University of Ulsan)
  • Received : 2010.09.17
  • Accepted : 2011.01.14
  • Published : 2011.04.30

Abstract

With the rapid development of technology, skyscrapers are widely spread and they are tightly coupled. If fire occurs in a building, it is easily spread to neighboring buildings, resulting in the large number of victims and property damages. To remove fire disasters, the need for early fire detection techniques is increasing. To detect fire, detecting devices for heat, smoke, and flame have been used widely. However, this paper surveys and presents the latest research which focuses on early smoke and flame detection algorithms and systems with camera's input images. In addition, this paper implements and evaluates the performance of these flame and smoke detection algorithms with several types of movies.

시대가 발전함에 따라 초고층 건물들이 도처에 세워지고 밀집되어 있다. 이러한 건물에 화재가 발생되면 발화지점 근처로 불이번지면서 대형화재의 위험성이 높아지고 이에 따른 인명 및 재산 피해가 증가한다. 따라서 이런 대형화재를 예방하고 피해를 최소화하기 위해서 화재를 미연에 감지하는 화재감지 기술에 대한 필요성이 높아지고 있다. 화재를 감지하기 위해 열감지기, 연기감지기, 불꽃감지기 등을 사용하는 방법이 있으나 본 논문에서는 감시 카메라에서 들어오는 입력 영상을 분석하여 화염과 연기를 초기에 감지하는 화재감지 시스템의 최근 연구 동향을 알아보고자 한다. 또한 이러한 화염과 연기 감지 알고리즘들을 다양한 형태의 동영상을 이용하여 구현 및 성능을 평가하였다.

Keywords

References

  1. B. U. Toreyin, Y. Dedeoglu, and A. E. Cetin, "Contour based smoke detection in video using wavelets," in European Signal Processing Conference, EUSIPCO-06, pp. 1-5, Sept. 2006.
  2. T. Chen, Y. Yin, S. Huang and Y. Yen, "The smoke detection for early fire-alarming system based on video processing," in Intelligent Information Hiding and Multimedia Signal Processing, pp.427-430, Dec. 2006.
  3. F. Yuan, "A fast accumulative motion orientation model based on integral image for video smoke detection," Pattern Recognition Letter, vol. 29, no. 7, pp.925-932, May 2008. https://doi.org/10.1016/j.patrec.2008.01.013
  4. T. Celik, H. Ozkaramanl, and H. Demirel, "Fire and smoke detection without sensors: image processing-based approach," in 15th European Signal Processing Conf., pp.1794-1798, Sept. 2007.
  5. J. Yang, F. Chen, and W. Zhang, "Visual-based smoke detection using support vector machine," in Fourth International Conference on Natural Computation, pp. 301-305, 2008.
  6. Z. Wei, X. Wang, W. An, J. Che, "Target-tracking based early fire smoke detection in video," in 2009 Fifth International Conference on Image and Graphics, pp. 172-176, 2009.
  7. T. Celik and H. Demirel, "Fire detection in video sequences using a generic color model," Fire Safety Journal, vol. 44, no. 2, pp.144-158, Feb. 2009.
  8. B. C. Ko, K. H. Cheong, and J. Y. Nam, "Fire detection based on vision sensor and support vector machines," Fire Safety Journal, vol. 44, no. 3, pp.322-329, April 2009. https://doi.org/10.1016/j.firesaf.2008.07.006
  9. B. U. Toreyin, Y. Dedeoglu. U. Gudukbay and A. E. Cetin, "Computer vision based method for real-time fire and flame detection," Pattern Recognition Letters, vol. 27, no. 1, pp.49-58, Jan. 2006. https://doi.org/10.1016/j.patrec.2005.06.015
  10. P. V. K. Borges and E. Izqierdo, "A probabilistic approach for vision-based fire detection in videos," IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 5, pp.721-731, May 2010. https://doi.org/10.1109/TCSVT.2010.2045813

Cited by

  1. Color-Texture Image Watermarking Algorithm Based on Texture Analysis vol.18, pp.4, 2011, https://doi.org/10.9708/jksci.2013.18.4.035
  2. Fire Detection Approach using Robust Moving-Region Detection and Effective Texture Features of Fire vol.18, pp.6, 2011, https://doi.org/10.9708/jksci.2013.18.6.021
  3. GPGPU를 이용한 비디오 기반 실시간 화재감지 알고리즘 구현 vol.19, pp.8, 2011, https://doi.org/10.9708/jksci.2014.19.8.001
  4. GPU를 이용한 다양한 해상도의 비디오기반 실시간 화재감지 방법 구현 및 성능평가 vol.20, pp.1, 2011, https://doi.org/10.9708/jksci.2015.20.1.001