DOI QR코드

DOI QR Code

A Non-linear Variant of Improved Robust Fuzzy PCA

잡음 민감성이 향상된 주성분 분석 기법의 비선형 변형

  • 허경용 (동의대학교 영상미디어센터) ;
  • 서진석 (동의대학교 게임공학과) ;
  • 이임건 (동의대학교 영상정보공학과)
  • Received : 2011.01.08
  • Accepted : 2011.02.09
  • Published : 2011.04.30

Abstract

Principal component analysis (PCA) is a well-known method for dimensionality reduction and feature extraction while maintaining most of the variation in data. Although PCA has been applied in many areas successfully, it is sensitive to outliers and only valid for Gaussian distributions. Several variants of PCA have been proposed to resolve noise sensitivity and, among the variants, improved robust fuzzy PCA (RF-PCA2) demonstrated promising results. RF-PCA, however, is still a linear algorithm that cannot accommodate non-Gaussian distributions. In this paper, a non-linear algorithm that combines RF-PCA2 and kernel PCA (K-PCA), called improved robust kernel fuzzy PCA (RKF-PCA2), is introduced. The kernel methods make it to accommodate non-Gaussian distributions. RKF-PCA2 inherits noise robustness from RF-PCA2 and non-linearity from K-PCA. RKF-PCA2 outperforms previous methods in handling non-Gaussian distributions in a noise robust way. Experimental results also support this.

주성분 분석(PCA)은 데이터의 차원을 줄이면서 최대의 데이터 변이를 보존하는 기법으로 차원 축소나 특징 추출을 위해 널리 사용되고 있다. 하지만 PCA는 잡음에 민감하며 가우스 분포에 대하여만 유효하다는 단점이 있다. 잡음 민감성의 개선을 위해 다양한 방법이 제시되었고 그 중 퍼지 소속도를 이용한 반복적 최적화 기법인 RF-PCA2가 다른 방법에 비해 우수한 성능을 보였다. 하지만 RF-PCA2는 가우스 분포에만 사용할 수 있는 선형 알고리듬이라는 한계가 있다. 이 논문에서는 RF-PCA2와 커널 주성분 분석(kernel PCA, K-PCA)을 결합하여 가우스 분포 이외의 분포들도 다룰 수 있는 비선형 알고리듬인 improved robust kernel fuzzy PCA (RKF-PCA2)를 제안한다. RKF-PCA2는 RF-PCA2 알고리듬의 잡음 강건성과K-PCA의비선형성을 통해 기존알고리듬에 비해 잡음민감성이 적으며 가우스분포 한계를 효과적으로 극복할 수 있다. 이러한 사실은 실험 결과를 통해 확인할 수 있다.

Keywords

References

  1. I. T. Jolliffe, Principal Component Analysis, 2nd Edition, Springer, 2002.
  2. P. Rousseeuw, "Multivariate estimation with high breakdown point," Mathematical Statistics and Applications B, pp. 283-297, 1985.
  3. C. D. Lu, T. Y. Zhang, X. Z. Du, and C. P. Li, "A robust kernel PCA algorithm," Proceedings of the 3rd International Conference on Machine Learning and Cybernetics, pp. 3084-3087, Aug., 2004.
  4. C. Lu, T. Zhang, R. Zhang, and C. Zhang, "Adaptive robust kernel PCA algorithm," Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. VI 621-624, April, 2003.
  5. G. Heo, P. Gader, and H. Frigui, "RKF-PCA: Robust kernel fuzzy PCA," Neural Networks, Vol. 22, No. 5-6, pp. 642-650, 2009. https://doi.org/10.1016/j.neunet.2009.06.013
  6. T. N. Yang and S. D. Wang, "Fuzzy auto-associative neural networks for principal component extraction of noisy data," IEEE Transaction on Neural Networks, Vol. 11, No. 3, pp. 808-810, 2000 https://doi.org/10.1109/72.846752
  7. T. R. Cundari, C. Sarbu, and H. F. Pop, "Robust fuzzy principal component analysis (FPCA). A comparative study concerning interaction of carbonhydrogen bonds with molybdenum-oxo bonds," Journal of Chemical Information and Computer Sciences, Vol. 42, No. 6, pp. 1363-1369, 2002. https://doi.org/10.1021/ci025524s
  8. Gyeongyong Heo, Seong Hoon Kim, Young Woon Woo, "An Improved Robust Fuzzy Principal Component Analysis," The Journal of the KIMICS, Vol. 14, No. 5, pp. 1093-1102, 2010. https://doi.org/10.6109/jkiice.2010.14.5.1093
  9. P. A. Estevez, A. M. Chong, C. M. Held, and C. A. Perez, "Nonlinear Projection Using Geodesic Distances and the Neural Gas Network," Proceedings of the 16th International Conference on Artificial Neural networks, vol. I, pp. 464-473, 2006.
  10. B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, 2001.
  11. B. Scholkopf, A. Smola, and K. R. Muller, "Nonlinear Component Analysis as a Kernel Eigenvalue Problem," Neural Computation, vol. 10, no. 5, pp. 1299-1319, 1998. https://doi.org/10.1162/089976698300017467
  12. G. Heo and P. Gader, "Fuzzy SVM for noisy data: A robust membership calculation method," Proceedings of the 2009 IEEE International Confernce on Fuzzy Systems, pp. 431-436, Aug., 2009.
  13. G. Heo, P. Gader, and H. Frigui, "Robust Kernel PCA using Fuzzy Membership," Proceedings of the 2009 International Joint Conference on Neural Networks, pp. 1213-1220, June, 2009.

Cited by

  1. RGB영상의 독립성분분석을 이용한 건고추영상 분류 vol.17, pp.4, 2011, https://doi.org/10.9708/jksci.2012.17.4.059