Nano Scale Compositional Analysis by Atom Probe Tomography: I. Fundamental Principles and Instruments

Atom Probe Tomography를 이용한 나노 스케일의 조성분석: I. 이론과 설비

  • Jung, Woo-Young (Department of Material Science and Engineering, POSTECH) ;
  • Bang, Chan-Woo (Department of Material Science and Engineering, POSTECH) ;
  • Gu, Gil-Ho (Department of Material Science and Engineering, POSTECH) ;
  • Park, Chan-Gyung (Department of Material Science and Engineering, POSTECH)
  • 정우영 (포항공과대학교 신소재공학과) ;
  • 방찬우 (포항공과대학교 신소재공학과) ;
  • 구길호 (포항공과대학교 신소재공학과) ;
  • 박찬경 (포항공과대학교 신소재공학과)
  • Received : 2011.06.03
  • Accepted : 2011.06.24
  • Published : 2011.06.30

Abstract

Even though importance of nano-scale structure and compositional analysis have been getting increased, existing analysis tools have been reached to their limitations. Recent development of Atom Probe Tomography (APT), providing 3-dimensional elemental distribution and compositional information with sub-nm scale special resolution and tens of ppm detection limit, is one of key technique which can overcome these limitations. However, due to the fact that APT is not well known yet in the domestic research area, it has been rarely utilized so far. Therefore, in this article, the theoretical background of APT was briefly introduced with sample preparation to help understanding APT analysis.

최근 나노 영역에서의 구조분석과 조성분석의 중요성이 증대되고 있으나, 기존의 분석장비들은 한계에 부딪히고 있다. 최근 개발된 APT는 nm 이하의 공간분해능과 수십 ppm수준의 detection limit으로 원소의 3차원분포와 조성정보를 제공해 주는 분석장비로서, 이러한 기존 분석의 한계를 극복할 수 있는 새로운 분석장비이다. 그러나 국내에는 아직 잘 알려지지 않아 활용이 미비한 실정이다. 따라서, 본 논문에서는 APT에 대한 이해를 돕기 위해 APT분석의 원리와 시편준비에 대해 소개하였다.

Keywords

References

  1. Blavette D, Deconihout B, Bostel A, Sarrau JM, Bouet M, Menand A: The tomographic atom probe: A quantitative three-dimensional nanoanalytical instrument on an atomic scale. Rev Sci Instrum 64 : 2911-2919, 1993. https://doi.org/10.1063/1.1144382
  2. Bunton JH, Olson JD, Lenz DR, Kelly TF: Advances in pulsed-laser atom probe: instrument and specimen design for optimum performance. Microsc Microanal 13 : 418-427, 2007.
  3. Cerezo A, Godfrey TJ, Sijbrandij SJ, Smith GDW, Warren PJ: Performance of an energy-compensated three-dimensional atom probe. Rev Sci Instrum 69 : 49-58, 1998. https://doi.org/10.1063/1.1148477
  4. Cerezo A, Godfrey TJ, Smith GDW: Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum 59 : 862-866, 1988. https://doi.org/10.1063/1.1139794
  5. Colijn HO, Kelly TF, Ulfig RM, Buchheit RG: Site-Specific FIB preparation of atom probe samples. Microsc Microanal 10 : 1150-1151, 2004.
  6. Deconihout B, Renaud L, Costa GD, Bouet M, Bostel A, Blavette D: Implementation of an optical TAP: preliminary results. Ultramicroscopy 73 : 253-260, 1998. https://doi.org/10.1016/S0304-3991(97)00164-2
  7. Farber B, Cadel E, Menand A, Schmitz G, Kirchheim R: Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acata Mater 48 : 789-796, 2000. https://doi.org/10.1016/S1359-6454(99)00397-3
  8. Gault B, Geuser F, Stephenson LT, Moody MP, Muddle BC, Ringer SP: Estimation of the reconstruction parameters for atom probe tomography. Microsc Microanal 14 : 296-305, 2008.
  9. Gault B, Moody MP, Geuser F, Haley D: Origin of the spatial resolution in atom probe microscopy. Appl Phys Lett 95 : 034103-043705-3, 2009. https://doi.org/10.1063/1.3182351
  10. Gault B, Vurpillot F, Vella A, Gilbert M, Menand A, Blavette D, Deconihout B: Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77 : 043705-043705-8, 2006. https://doi.org/10.1063/1.2194089
  11. Gorman B: Atom probe reconstruction refinements by pre- and postanalysis TEM structure quantification. Microsc Microanal 13 : 1616-1617, 2007.
  12. Gu GH, Park CG, Nam KB: Inhomogeneity of a highly efficient InGaN based blue LED studied by three-dimensional atom probe tomography. Phys Status Solidi RRL 3 : 100-102, 2009. https://doi.org/10.1002/pssr.200903007
  13. Kellogg GL, Tsong TT: Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51 : 1884-1193, 1980.
  14. Larson DJ, Foord DT, Petford-Long AK, Liew H, Blamire MG, Cerezo A, Smith GDW: Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79 : 287-293, 1999. https://doi.org/10.1016/S0304-3991(99)00055-8
  15. Miller MK: Atom Probe Tomography, Springer, New York, NY, pp. 1-23, 157-194, 2000.
  16. Miller MK: Concepts in atom probe designs. Surf Sci 246 : 428-433, 1991. https://doi.org/10.1016/0039-6028(91)90447-Z
  17. Muller EW: Field Desorption. Phys Rev 102 : 618-624, 1956 https://doi.org/10.1103/PhysRev.102.618
  18. Muller EW: The field ion microscope. Z phys 131 : 136-142, 1951. https://doi.org/10.1007/BF01329651
  19. Muller EW, Brandon DG: Field ionization of gases at a metal surface and the resolution of the field ion microscope. Phys Rev 102 : 624-631, 1956. https://doi.org/10.1103/PhysRev.102.624
  20. Muller EW, Panitz JA, McLane SB: The atom-probe field ion microscope. Rev Sci Instrum 39 : 83-86, 1968. https://doi.org/10.1063/1.1683116
  21. Muller EW, Tsong TT: Field Ion Microscopy Principles and Applications, Elsevier, New York, pp. 109-127, 1969.
  22. Portavoce A, Blum I, Mangelinck D, Hoummada K, Chow L, Carron V, Labar JL: Boron clustering in implanted NiSi. Scripta Mater 64 : 828-831, 2011. https://doi.org/10.1016/j.scriptamat.2011.01.015
  23. Rachbauer R, Stergar E, Massl S, Moser M, Mayrhofer PH: Threedimensional atom probe investigations of Ti-Al-N thin films. Scripta Mater 61 : 725-728, 2009. https://doi.org/10.1016/j.scriptamat.2009.06.015
  24. Ronsheim P, Flaitz P, Hatzistergos M, Molella C, Thompson K, Alvis R: Impurity measurements in silicon with D-SIMS and atom probe tomography. Appl Surf Sci 255 : 1547-1550, 2008. https://doi.org/10.1016/j.apsusc.2008.05.247
  25. Seol JB, Gu GH, Lim NS, Das S, Park CG: Atomic scale investigation on the distribution of boron in medium carbon steels by atom probe tomography and EELS. Ultramicroscopy 110 : 783-788, 2010. https://doi.org/10.1016/j.ultramic.2009.12.006
  26. Takahashi J, Kawakami K, Kobayashi Y, Toshimi T: The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scripta Mater 63 : 261-264, 2010. https://doi.org/10.1016/j.scriptamat.2010.03.012
  27. Thompson K, Flaitz PL, Ronsheim P, Larson DJ, Kelly TF: Imaging of arsenic cottrell atmospheres around silicon defects by threedimensional atom probe tomography. Science 317 : 1370-1374, 2007. https://doi.org/10.1126/science.1145428
  28. Thompson K, Lawrence D, Larson DJ, Olson JD, Kelly TF, Gorman B: Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicoscopy 102 : 287-298, 2005. https://doi.org/10.1016/j.ultramic.2004.10.011
  29. Tsong TT: Atom-Probe Field Ion Microscopy, Cambridge University Press, pp. 31-71, 1990.
  30. Tsong TT, McLane SB, Kinkus TJ: Pulsed-laser time-of-flight atomprobe field ion microscope. Rev Sci Instrum 53 : 1442-1448, 1982. https://doi.org/10.1063/1.1137193
  31. Vaumousse D, Cerezo A, Warren PJ: A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy 95 : 215-221, 2003.