DOI QR코드

DOI QR Code

백합나무의 체세포배 유도에 미치는 ABA, 환원질소원 및 삼투압제 효과

Effects of ABA, reduced nitrogen source and osmoticum for somatic embryogenesis in Liriodendron tulipifera

  • 김용욱 (국립산림과학원 산림생명공학과) ;
  • 한무석 (국립산림과학원 산림생명공학과) ;
  • 문흥규 (국립산림과학원 산림생명공학과) ;
  • 박소영 (국립산림과학원 산림생명공학과)
  • Kim, Yong-Wook (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Han, Mu-Seok (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Moon, Heung-Kyu (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Park, So-Young (Division of Forest Biotechnology, Korea Forest Research Institute)
  • 투고 : 2011.06.16
  • 심사 : 2011.06.20
  • 발행 : 2011.06.30

초록

본 연구는 백합나무 배발생조직으로부터 체세포배 유도에 영향하는 ABA (abscisic acid)의 농도, 환원질소원 및 삼투압제의 종류 및 농도 효과를 조사하기 위해 수행되었다. ABA농도 비교에서는 0.5 mg/L 첨가구에서 가장 높은 체세포배 유도 수 (640/10 mg 조직)를 보였으나 0.5 mg/L 이상의 농도에서는 점차 체세포배 발생 수는 감소하는 경향을 보였으며, 20 mg/L 농도에서 가장 낮은 유도수 (250/5 mg 조직)를 나타냈다. 8종류 환원질소원 종류 및 농도에 대한 체세포배 유도 효과를 비교한 결과 최대 체세포배 유도는 500 mg/L casamino acid (223/5 mg 조직) 첨가구에서 나타났으나, 그 외 환원질소원 종류 및 농도에 따라 매우 다양하게 나타났다. 삼투압제 종류 및 농도 비교에서는 최고의 체세포배 발생 수 (317/5 mg 조직)는 4% sucrose 첨가 시 나타났으나 maltose 첨가배지에서는 농도에 상관없이 체세포배가 전혀 유도되지 않아 삼투압제 종류에 따라 큰 차이를 보였다.

This study was conducted to evaluate effects of various kinds or concentrations in abscisic acid (ABA), reduced nitrogen sources (casein hydrolysate, casamino acid and L-glutamine) and osmoticum for production of somatic embryos (SEs) from pro-embryogenic mass (PEM) in yellow poplar (Liriodendron tulipifera). In comparison of various concentrations of ABA, the highest number (640/10 mg PEM) of SEs was marked in the treatment of 0.5 mg/L. With higher concentration than 0.5 mg/L ABA, number of induced SEs were decreased. And the lowest number of SEs were obtained from the treatment of 20 mg/L ABA. Differences of 8 treatments of the nitrogen sources in the medium were also compared. In the experiment of 8 treatments for SEs production, the highest result showed in the treatment of 500 mg/L casamino acid (223/5 mg PEM). In comparison of different kinds/concentrations of osmotica for SEs induction, the best response was obtained from the treatment of 4% sucrose (317/5 mg PEM). In contrast, no SEs were found from the treatments supplemented with any concentrations of maltose.

키워드

참고문헌

  1. Attree SM, Pomeroy MK, Fowke LC (1992) Manipulation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta 187:395-404
  2. Beardmore T, Charest PJ (1995) Black spruce somatic embryo germination and desiccation tolerance II. Effect of an abscisic acid treatment on protein synthesis. Can J For Res 25: 1773-1782 https://doi.org/10.1139/x95-192
  3. Dai J, Vendrame WA, Merkle SA (2004) Enhancing the productivity of hybrid yellow-poplar and hybrid sweetgum embryogenic cultures. In Vitro Cell Dev Bio.-Plant 40: 376-383 https://doi.org/10.1079/IVP2004538
  4. Hristoforoglu K, Schmidt J, Bolhar-Nordenkampf H (1995) Development and germination of Abies alba somatic embryos. Plant Cell Tiss Org Cult 40:277-284 https://doi.org/10.1007/BF00048134
  5. Kirby EG, Leustek T, Lee MS (1987) Nitrogen nutrition. In: Bonga JM, Durzan DJ (eds.) General Principles and Biotechnology, Cell and Tissue Culture in Forestry, vol. 1 (pp. 67-88), Nijhoff, Dordrecht
  6. Khlifi S, Tremblay FM (1995) Maturation of black spruce somatic embryos. I. Effect of L-glutamine on the number and germinability of somatic embryos. Plant Cell Tiss Org Cult 41:23-32 https://doi.org/10.1007/BF00124083
  7. Kim YW, Newton R, Frampton J, Han KH (2009) Embryogenic tissue initiation and somatic embryogenesis in Fraseir fir (Abies fraseir [Pursh] Poir.). In Vitro Cell Dev Biol-Plant 45:400-406 https://doi.org/10.1007/s11627-008-9169-3
  8. Kim YW, Moon HK (2007a) Enhancement of somatic embryogenesis and plant regeneration in Japanese larch (Larix leptolepis). Plant Cell Tiss Org Cult 88:241-245 https://doi.org/10.1007/s11240-007-9202-y
  9. Kim YW, Moon HK (2007b) Regeneration of plant by somatic embryogenesis in Pinus rigida ${\times}$ P. taeda. In Vitro Cell Dev Biol-Plant 43:335-342 https://doi.org/10.1007/s11627-007-9045-6
  10. Kim YW, Moon HK, Son SG (2006) Repetitive somatic embryogenesis and plant regeneration in Zizyphus jujuba Mill. In Vitro Cell Dev Biol-Plant 42:247-251 https://doi.org/10.1079/IVP2006754
  11. Lee JS, Moon HK, Kim YW (2003) Mass propagation of Liriodendron tulipifera L. via somatic embryogenesis. Kor J Plant Biotech 30:359-363 https://doi.org/10.5010/JPB.2003.30.4.359
  12. Lee KS, Lee JC, Soh WY (2002) High frequency palnt regeneration from Aralia cordata somatic embryos. Plant Cell Tiss Org Cul 68:241-246 https://doi.org/10.1023/A:1013989707725
  13. Litvay JD, Verma DC, Johnson MA (1985) Influence of a loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Darcus carota L.). Plant Cell Rep 4:325-328 https://doi.org/10.1007/BF00269890
  14. Merkle SA, Sommer HE (1986) Somatic embryogenesis in tissue cultures of Liriodendron tulipifera. Can J For Res 16:420-422 https://doi.org/10.1139/x86-077
  15. Merkle SA, Sotak RJ, Wieeko AT, Dommer HE (1990) Maturation and conversion of Liriodendron tulipifera somatic embryos. In Vitro Cell Dev Biol-Plant 26: 1086-1093 https://doi.org/10.1007/BF02624445
  16. Norgaard JV, Krogstrup P (1991) Cytokinin induced somatic embryogenesis from immature embryos of Abies nordmanniana LK. Plant Cell Rep 9:509-513
  17. Scott P, Lyne RL, Rees TA (1995) Metabolism of maltose and sucrose by microspores isolated from barley (Hordeum vulgare). Planta 197:435-441
  18. Sharma P, Pandey S, Bhattacharya A, Nagar PK and Ahuja PS. 2004. ABA associated biochemical changes during somatic embryo development in Camellia sinensis (L.) O. Kuntze. J. Plant Physiol. 161: 1269-1276 https://doi.org/10.1016/j.jplph.2004.01.015
  19. Shoji M, Sato H, Nakagawa R, Funada R, Kubo T, Ogita S (2006) Influence of osmotic pressure on somatic embryo maturation in Pinus densiflora. J For Res 11:449-453 https://doi.org/10.1007/s10310-006-0227-6
  20. Son SG, Moon HK, Kim YW, Kim JA (2005) Effect of mother trees and dark culture condition affecting on somatic embryogenesis of Liriodendron tulipifera L. J Kor For Soc 94:39-44
  21. Tomaz ML, Januzzi Mendes BM, Mourao Filho FD, Demetrio CGB, Jansakul N, Martinelli Rodriguez AP (2001). Somatic embryogenesis in Citrus Spp.: Carbohydrate stimulation and histodifferentiation. In Vitro Cell Dev Biol-Plant 37:446-452 https://doi.org/10.1007/s11627-001-0078-y
  22. Troch V, Werbrouck S, Geelen D, Labeke MV (2009) Optimization of horse chesnut (Aesculus hippocastanum L.) somatic embryo conversion. Plant Cell Tiss Organ Cult 98:115-123 https://doi.org/10.1007/s11240-009-9544-8
  23. von Arnold S (1987) Improved efficiency of somatic embryogenesis in mature embryos of Picea abies (L.) Karst. J Plant Physiol 128:233-244 https://doi.org/10.1016/S0176-1617(87)80237-7

피인용 문헌

  1. Comparison of Physiological Characteristics, Stomata and DNA Content between Seedling and 5-year-old Somatic Plant (Somatic Embryo Derived-plant) in Liriodendron tulipifera vol.102, pp.4, 2013, https://doi.org/10.14578/jkfs.2013.102.4.537