DOI QR코드

DOI QR Code

고강도 운동 시 성별에 따른 혈장 MDA, SOD 및 임파구 DNA 손상 변화

Gender-Specific Changes of Plasma MDA, SOD, and Lymphocyte DNA Damage during High Intensity Exercise

  • 조수연 (연세대학교 체육교육학과) ;
  • 정영수 (명지전문대학 사회체육학과) ;
  • 곽이섭 (동의대학교 체육학과) ;
  • 노희태 (연세대학교 체육교육학과)
  • Cho, Su-Youn (Department of Physical Education, Yonsei University) ;
  • Chung, Young-Soo (Department of Sports and Leisure Studies, Myong-Ji College) ;
  • Kwak, Yi-Sub (Department of Physical Education, Dong-Eui University) ;
  • Roh, Hee-Tae (Department of Physical Education, Yonsei University)
  • 투고 : 2011.03.27
  • 심사 : 2011.06.14
  • 발행 : 2011.06.30

초록

본 연구는 고강도 1회성 운동 시 혈장 MDA와 SOD의 농도변화와 임파구 DNA 손상에 대한 성별의 차이를 평가하는데 목적이 있었다. 본 연구의 목적을 달성하기 위하여 남자 대학생과 여자 대학생을 대상으로 85%$VO_{2max}$ all-out 운동수행에 따른 혈장 MDA와 SOD 그리고 임파구 DNA 손상에 대한 분석을 실시하였으며, 연구 결과에 대한 결론은 다음과 같다. 85%$VO_{2max}$ all-out 운동에 따른 혈장 MDA와 SOD는 운동 종료 시 유의하게 증가하였으며, 통계적으로 유의한 차이는 나타나지 않았으나 남성이 여성에 비해 MDA는 높고 SOD는 낮은 경향을 보였다. 반면 85%$VO_{2max}$ all-out 운동에 따른 임파구 DNA 손상을 알아보기 위해 실시한 comet assay 결과 세 가지 parameter (%DNA in the tail, tail length, tail moment) 모두 운동 종료 시 유의하게 증가하였으며 남성의 %DNA in the tail과 tail length가 여성에 비해 통계적으로 유의하게 높게 나타났다. 따라서 본 연구 결과를 종합해보면 1회성 고강도 운동은 산화적 스트레스를 유발할 수 있으며 남성이 여성에 비해 산화적 손상이 더 크다고 보여진다. 그러나, DNA 손상에는 산화적 스트레스 외에도 체력, 호르몬 수치, 생활습관, 운동 강도 및 지속시간 등 여러 가지 요인들이 영향을 줄 수 있다고 보고되고 있어, 성별에 따른 DNA 손상에 대한 명확한 기전을 제시하기 위해서는 DNA 손상에 영향을 줄 수 있는 여러 요인들과의 관계를 고려한 지속적인 연구들이 필요하다고 생각된다.

The purpose of this study was to investigate gender-specific changes of plasma MDA, SOD, and lymphocyte DNA damage during high intensity exercise. In this study, 17 healthy male and 18 healthy female college students ran on a treadmill at 85%$VO_{2max}$ until the point of all-out. Blood-collecting was carried out five times (Rest, Ex-Exha, R0.5h, R4h and R24h), and with the collected blood, plasma malondialdehyde (MDA), superoxide dismutase (SOD), and lymphocyte DNA damage were analyzed. Plasma MDA and SOD concentration increased significantly at the Ex-Exha (p<0.05), and there were no significant differences in gender. For the degree of lymphocyte DNA damage, all %DNA in the tail, tail length and tail moment increased significantly at the Ex-Exha (p<0.05), and %DNA in the tail and tail length were significantly higher in the male group than in the female group (p<0.05). These results suggest that acute high intensity exercise not only causes oxidative stress but also brings about lymphocyte DNA damage. In addition, it was found that males showed higher DNA damage than females in terms of oxidative stress subject to high intensity exercise. Nevertheless, further subsequent studies are required in order to better understand the mechanism behind DNA damage varying with gender, in a way that takes into consideration physical fitness, hormonal level, exercise intensity and duration - additional factors which might affect DNA damage.

키워드

참고문헌

  1. Alessio, H. M. 1993. Exercise-induced oxidative stress. Med. Sci. Sports Exerc. 25, 218-24.
  2. American College of Sports Medicine. 2005. ACSM's guidelines for exercise testing and prescription, 7th eds. Lippincott Williams & Wilkins. Philadelphia.
  3. Bajpayee, M., A. Dhawan, D. Parmar, A. K. Pandey, N. Mathur, and P. K. Seth. 2002. Gender-related differences in basal DNA damage in lymphocytes of a healthy Indian population using the alkaline Comet assay. Mutat. Res. 520, 83-91. https://doi.org/10.1016/S1383-5718(02)00175-4
  4. Bloomer, R. J. 2008. Effect of exercise on oxidative stress biomarkers. Adv. Clin. Chem. 46, 1-50. https://doi.org/10.1016/S0065-2423(08)00401-0
  5. Bruce, R. A., J. R. Blackmon, J. W. Jones, and G. Strait. 1963. Exercising testing in adult normal subjects and cardiac patients. Pediatrics 32, 742-756.
  6. Cakatay, U., S. Aydin, K. Yanar, and H. Uzun. 2010. Gender-dependent variations in systemic biomarkers of oxidative protein, DNA, and lipid damage in aged rats. Aging Male. 13, 51-58. https://doi.org/10.3109/13685530903236470
  7. Chandan, K. S. 1995. Oxidants and antioxidants in exercise. J. Appl. Physiol. 79, 675-686.
  8. Garcia, O., T. Mandina, A. I. Lamadrid, A. Diaz, A. Remigio, Y. Gonzalez, J. Piloto, J. E. Gonzalez, and A. Alvarez. 2004. Sensitivity and variability of visual scoring in the comet assay. Results of an inter-laboratory scoring exercise with the use of silver staining. Mutat. Res. 22, 25-34.
  9. Ginsburg, G. S., M. O'Toole, E. Rimm, P. S. Douglas, and N. Rifai. 2001. Gender differences in exercise-induced changes in sex hormone levels and lipid peroxidation in athletes participating in the Hawaii Ironman triathlon. Ginsburg-gender and exercise-induced lipid peroxidation. Clin. Chim. Acta 305, 131-139. https://doi.org/10.1016/S0009-8981(00)00427-7
  10. Goldfarb, A. H., M. J. McKenzie, and R. J. Bloomer. 2007. Gender comparisons of exercise- induced oxidative stress: influence of antioxidant supplementation. Appl. Physiol. Nutr. Metab. 32, 1124-1131. https://doi.org/10.1139/H07-078
  11. Haleng, J., J. O. Pincemail, J. O. Defraigne, C. Charlier, and J. P. Chapelle. 2007. Oxidative stress. Med. Liege. 62, 628-638.
  12. Hartmann, A. and A. Niess. 2000. Oxidative DNA damage in exercise. Handbook of oxidants and antioxidants in exercise. Elsevier. Amsterdam.
  13. Hofer, T., H. L. Karlsson, and L. Moller. 2006. DNA oxidative damage and strand breaks in young healthy individuals: a gender difference and the role of life style factors. Free Radic. Res. 40, 707-714. https://doi.org/10.1080/10715760500525807
  14. Joo, M. H., E. Maehata, T. Adachi, A. Ishida, F. Murai, and N. Mesaki. 2004. The relationship between exercise-induced oxidative stress and the menstrual cycle. Eur. J. Appl. Physiol. 93, 82-86. https://doi.org/10.1007/s00421-004-1168-4
  15. Kaikkonen, J., E. Porkkala-Sarataho, T. P. Tuomainen, K. Nyyssönen, L. Kosonen, U. Ristonmaa, H. M. Lakka, R. Salonen, H. Korpela, and J. T. Salonen. 2002. Exhaustive exercise increases plasma/serum total oxidation resistance in moderately trained men and women, whereas their VLDL + LDL lipoprotein fraction is more susceptible to oxidation. Scand. J. Clin. Lab. Invest. 62, 599-607. https://doi.org/10.1080/003655102764654330
  16. Lioyd, D. 1999. Microbial ecology. How to avoid oxygen. Science 286, 249. https://doi.org/10.1126/science.286.5438.249
  17. Massafra, C., D. Gioia, C. De Felice, E. Picciolini, V. De Leo, M. Bonifazi, and A. Bernabei. 2000. Effects of estrogens and androgens on erythrocyte antioxidant superoxide dismutase, catalase and glutathione peroxidase activities during the menstrual cycle. J. Endocrinol. 167, 447-452. https://doi.org/10.1677/joe.0.1670447
  18. Mastaloudis, A., T. W. Yu, R. P. O'Donnell, B. Frei, R. H. Dashwood, and M. G. Traber. 2004. Endurance exercise results in DNA damage as detected by the comet assay. Free Radic. Biol. Med. 36, 966-975. https://doi.org/10.1016/j.freeradbiomed.2004.01.012
  19. Peake, J. M., K. Suzuki, M. Hordern, G. Wilson, K. Nosaka, and J. S. Coombes. 2005. Plasma cytokine changes in relation to exercise intensity and muscle damage. Eur. J. Appl. Physiol. 95, 514-521. https://doi.org/10.1007/s00421-005-0035-2
  20. Powers, S. K., L. L. Ji, and C. Leeuwenburgh. 1999. Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med. Sci. Sports Exerc. 31, 987-997. https://doi.org/10.1097/00005768-199907000-00011
  21. Reichhold, S., O. Neubauer, A. C. Bulmer, S. Knasmuller, and K. H. Wagner. 2009. Endurance exercise and DNA stability: is there a link to duration and intensity? Mutat. Res. 682, 28-38. https://doi.org/10.1016/j.mrrev.2009.02.002
  22. Sachdev, S. and K. J. Davies. 2008. Production, detection, and adaptive responses to free radicals in exercise. Free Radic. Biol. Med. 15, 215-223.
  23. Sacheck, J. M., P. E. Milbury, J. G. Cannon, R. Roubenoff, and J. B. Blumberg. 2003. Effect of vitamin E and eccentric exercise on selected biomarkers of oxidative stress in young and elderly men. Free Radic. Biol. Med. 15, 1575-1588.
  24. Seifi-Skishahr, F., M. Siahkohian, and B. Nakhostin-Roohi. 2008. Influence of aerobic exercise at high and moderate intensities on lipid peroxidation in untrained men. J. Sports Med. Phys. Fitness 48, 515-521.
  25. Smekal, G., S. P. von Duvillard, P. Frigo, T. Tegelhofer, R. Pokan, P. Hofmann, H. Tschan, R. Baron, M. Wonisch, K. Renezeder, and N. Bachl. 2007. Menstrual cycle: no effect on exercise cardiorespiratory variables or blood lactate concentration. Med. Sci. Sports Exerc. 39, 1098-1106. https://doi.org/10.1249/mss.0b013e31805371e7
  26. Sureda, A., M. D. Ferrer, P. Tauler, J. A. Tur, and A. Pons. 2008. Lymphocyte antioxidant response and $H_2O_2$ production after a swimming session: genderdifferences. Free Radic. Res. 42, 312-319. https://doi.org/10.1080/10715760801989926
  27. Tiidus, P. M. 2000. Estrogen and gender effects on muscle damage, inflammation, and oxidative stress. Can. J. Appl. Physiol. 25, 274-287. https://doi.org/10.1139/h00-022
  28. Urso, M. L. and P. M. Clarkson. 2003. Oxidative stress, and antioxidant supplementation. Toxicology 189, 41-54. https://doi.org/10.1016/S0300-483X(03)00151-3
  29. Vina, J., J. Sastre, F. V. Pallardo, J. Gambini, and C. Borras. 2006. Role of mitochondrial oxidative stress to explain the different longevity between genders: protective effect of estrogens. Free Radic. Res. 40, 1359-1365. https://doi.org/10.1080/10715760600952851
  30. Wierzba, T. H., R. A. Olek, D. Fedeli, and G. Falcioni. 2006. Lymphocyte DNA damage in rats challenged with a single bout of strenuous exercise. J. Physiol. Pharmacol. 10, 115-131.
  31. Wiseman, H. and B. Halliwell. 1996. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313, 17-29.
  32. Yamafuji, K., S. Iiyama, and K. Shinohara. 1971. Mode of action of steroid hormones on deoxyribonucleic acid. Enzymologia 30, 259-264.
  33. You, T., A. H. Goldfarb, R. J. Bloomer, L. Nguyen, X. Sha, and M. J. McKenzie. 2005. Oxidative stress response in normal and antioxidant supplemented rats to a downhill run: Changes in blood and skeletal muscles. Can. J. Appl. Physiol. 30, 677-689. https://doi.org/10.1139/h05-148