Abstract
In this study, 3-D analyses were conducted while taking every construction stage into account. Then 2-D analyses were conducted which yield the same results with the 3-D results. The crown settlement normalized by the ultimate value was compared during the process to overcome the discrepancy caused by different dimensions. When a bench or a core is left uncut to give extra support to the face and eventually the whole excavation boundary, this extra supporting effect also has to be included in the analysis. In this study, this effect is also implemented in terms of the load distribution factor. When the length of the bench is very short compared to the diameter of the tunnel in such cases as in short bench cut or in mini-bench cut, the supporting effect of the face does not disappear even after the bench is completely excavated and supported since the face is still too close to the point of interest. The 4th load distribution factor was defined to stand for the advance of the face after the completion of the excavation cycle. The 4th load distribution factor turned out to be very useful in determining the load distribution factors when a tunnel is excavated by bench cut with various bench lengths under different initial conditions.
본 연구에서는 시공단계를 정확하게 고려하여 3차원 해석을 수행하고, 이와 동일한 결과를 나타내는 2차원 해석 결과를 얻고자 천단변위를 기준으로 하여 하중분배율을 결정하였다. 2차원 해석 결과와 3차원 해석 결과에서 천단변위의 총량에는 차이가 있어, 이를 극복하고자 각 단계에서의 천단변위 값을 총 변위량으로 나눈 '천단변위비'를 비교 대상으로 정하였다. 또한 숏벤치 공법이나 미니벤치 공법의 경우에서처럼 상하 반단면 분할굴착에서 벤치의 길이가 짧은 경우에는 하부 반단면의 굴착이 완료된 후에도 굴진면의 지지효과가 사라지지 않는 상황이 발생한다. 이러한 상황을 해석에 반영하고자 4번째 하중분배계수를 도입하여 굴진면 전진 효과를 구현하도록 하였다. 그 결과 전단면 굴착, 상하 반단면 분할굴착, 벤치 길이의 변화 및 초기 응력 상태 등을 고려한 다양한 경우에 대하여 합리적으로 하중분배율을 결정하는 방법을 제시하였다.