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A CONTINUOUS ONE-TO-ONE FUNCTION WHOSE INVERSE IS
NOWHERE CONTINUOUS

Won Kyu Kim a, ∗ and Sun Pyo Hong b

Abstract. Main purpose of this note is to construct an example of a continuous
one-to-one function f : Q∗ → R whose inverse is nowhere continuous, and to show
that the completeness is not necessary for the continuous inverse theorem.

1. Preliminary

It is well-known that there exits a continuous one-to-one function f on an interval
whose inverse is not continuous. For this example, it is necessary that the interval
not be a closed bounded interval, and that the function not be strictly real-valued.
Indeed, as in [4, p. 27], let us consider the function f : [0, 2π) → R2 defined by

f(t) := (cos t, sin t) for each t ∈ [0, 2π).

Then it is easy to see that f is a continuous one-to-one function whose image is the
unit circle S1 = {(x, y) ∈ R2 | x2 +y2 = 1}. And the inverse function f−1 of f maps
from S1 into [0, 2π), and actually f−1(P ) is its radian where P (x, y) ∈ S1. It is easy
to see that f−1 is not continuous at (1, 0). And, in this example, the completeness
on the domain of f is essential for the continuity of the inverse function f−1.

On the other hand, in many analysis texts (e.g., see [1-3, 5]), it is not easy to
find an example of a continuous one-to-one function f which maps from a subset of
R into R whose inverse is nowhere continuous. So it is interesting to introduce such
an instructive example in the mathematical analysis.

2. Main Results

Now we will construct an example of a real-valued continuous one-to-one function
defined on a subset of R whose inverse function is nowhere continuous.
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Theorem 1. There does exist a continuous one-to-one function f : Q∗ = Q\{0} →
R whose inverse function f−1 is nowhere continuous on f(Q∗).

Proof. Let f : Q∗ → R be a function defined by for each x ∈ Q∗,
f(x) := x− k

√
2, if k

√
2 < x < (k + 1)

√
2 for some k ∈ Z.

Then it is easy to see that f is continuous and one-to-one in Q∗. Indeed, if f(x) =
f(y), x, y ∈ Q∗, then x − k1

√
2 = y − k2

√
2 for some k1, k2 ∈ Z. Hence x − y =

(k1 − k2)
√

2. Since x, y ∈ Q∗ and k1 − k2 ∈ Z, we have x = y and k1 = k2 so that
f is one-to-one in Q∗. Also, f is continuous on

(
k
√

2, (k + 1)
√

2
)
∩ Q∗ for each

k ∈ Z so that f is continuous in Q∗.
Note that the image of f is the set f(Q∗) = {x − k

√
2 | x ∈ Q∗, k

√
2 < x <

(k + 1)
√

2 for some k ∈ Z } which is denumerable and dense proper subset of
(0,
√

2). Also, we can see that
√

3
2 /∈ f(Q∗). Indeed, if

√
3

2 = x − k
√

2 for some
x ∈ Q∗, k ∈ Z, then 2x = 2k

√
2 +

√
3 which is impossible.

We now show that the inverse function f−1 is not continuous in f(Q∗). If yo ∈
f(Q∗), then yo ∈ (0,

√
2) and yo + k

√
2 ∈ Q∗ for some k ∈ Z. And we can choose a

rational sequence {rn} ⊂ Q∗ such that for each n ∈ N,

n
√

2 < rn < (n + 1)
√

2 and | rn − n
√

2− yo | < 1
n

.

This can be possible since Q∗ is a dense subset of R and f(Q∗) is a dense subset
of (0,

√
2). We let yn := rn − n

√
2 for each n ∈ N; then the sequence {yn} is a

irrational sequence in f(Q∗) converging to yo ∈ f(Q∗). Thus, for each n ∈ N,

f−1(yn) = rn and f−1(yo) = yo + k
√

2;

but {f−1(yn)} → ∞ so that f−1 is not continuous at yo. This completes the proof.
¤

As is well-known, the continuous inverse theorem, e.g., see [2, p. 326], is as follow:
Let K be a non-empty compact subset of R, and let f : K → R be a continuous
one-to-one function on K. Then f−1 is continuous on f(K).
Also, the following fact is well-known as we can see in [5]: Suppose that f is a
continuous one-to-one function from an interval A ⊆ R onto a subset B ⊆ R. Then
the function f−1 is continuous from B onto A.

However, we note that it is impossible to find a counterexample for the contin-
uous inverse theorem of a continuous one-to-one function f which maps from a
non-complete interval [a, b) into R. Indeed, since f is continuous one-to-one on the
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interval [a, b), the image f
(
[a, b)

)
must be an interval so that its shape should be

either [c, d) or (c, d]
(
possibly, either [c,∞) or (−∞, d]

)
, and hence f−1 must be

continuous. Therefore, the completeness is not a necessary condition for the con-
tinuous inverse theorem. Hence, finding some necessary conditions or even more
finding some characterizations on the existence of the continuous inverse function
for a given continuous one-to-one function f : I → R is very instructive in the
mathematical analysis.

Also, we will give a simple result on the existence of continuous inverse func-
tion, which shows that the completeness is not necessary for the continuous inverse
theorem.:

Theorem 2. Let G ⊆ R be a non-empty open subset of R, and let f : G → R be a
continuous one-to-one function on G. Then f−1 is continuous on f(G).

Proof. By Theorem 11.1.9 in [2], G is the union of countably many disjoint open
intervals in R, say G = ∪n∈NIn, where In = (an, bn). Since f is a continuous one-
to-one function on G, for each n ∈ N, f is continuous one-to-one on In so that
f is strictly monotone on In. Hence f(G) = ∪n∈Nf(In) is the union of countably
many disjoint open intervals in R. Therefore, f−1 is a continuous inverse function
on f(G). ¤

Finally, it might be interesting that the characterization on the existence of a
continuous inverse function for a continuous one-to-one function f : A → R, where
A ⊆ R, can be stated as the condition on A. As we already mentioned, there can
be many sufficient conditions on A, e.g., A is compact, open, finite union of disjoint
intervals, etc..
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