DOI QR코드

DOI QR Code

Day-to-day dynamics model based on consistent travel time perception behavior

운전자의 일관성 있는 통행시간 인지 행태에 기반한 일별 동적 모형

  • Received : 2011.05.03
  • Accepted : 2011.05.13
  • Published : 2011.06.15

Abstract

This study develops a day-to-day dynamics modeling framework, incorporating a consistent drivers' travel time perception behavior and traffic information provision. Descriptive traffic information is updated and provided to the subscribers making a final decision on route choice. Nonsubscribers(not equipped any information devices) are assumed to obtain daily traffic information from their experience or friends or other public agencies. Drivers' route choice behavior is modeled based on boundedly-rational behavior rules. A microscopic traffic simulation model is adopted to evaluate the network system performance. Numerical experiments on a real world network have demonstrated the convergent property of the proposed model and the effectiveness of the consistent perception model.

본 연구에서는 운전자의 일관성 있는 교통 정보 학습과정을 기반으로 한 일별 동적 모형을 개발하였다. 개발된 모형은 교통 정보 서비스의 효과 분석이 가능한 형태의 체계를 갖추었다. 즉, 교통 시스템에는 교통 정보 서비스 업체(ISP, Information Service Provider)가 존재하며, ISP의 가입자는 과거 실시간 교통 정보를 제공받으며, 이를 바탕으로 경로를 선택한다. 반면, 교통 정보 미가입자는 개인의 경험 또는 친구, 교통방송 등을 통해서만 교통 정보를 학습하게 된다. 운전자의 경로 선택은 Boundedly-rational 모형으로 표현되었으며, 주어진 동적 통행 수요와 경로 선택에 따른 도로 교통망의 성능을 평가하기 위해 미시 교통 시뮬레이션 모형 (파라믹스)이 사용되었다. 개발된 모형은 실제 도로망에 적용되었으며, 도출된 결과는 개발된 모형의 수렴성과 일관성있는 교통 정보 학습 모형의 효과를 입증하였다.

Keywords

References

  1. Beckmann M., McGuire C. G. and Winsten C. B. (1956) Studies in the Economics of Transportation. Yale University Press, New Haven, CT.
  2. Cascetta, E. (1989). A stochastic process approach to the analysis of temporal dynamics in transportation networks. Transportation Research Part B: Methodological, 23(1), 1-17.
  3. Cascetta, E., and Cantarella, G. E. (1991). A day-to-day and within-day dynamic stochastic assignment model. Transportation Research Part A: General, 25(5), 277-291. https://doi.org/10.1016/0191-2607(91)90144-F
  4. Chen, R., and Mahmassani, H. (2004). Travel Time Perception and Learning Mechanisms in Traffic Networks. Transportation Research Record: Journal of the Transportation Research Board, 1894, 209-221.
  5. Hazelton, M. L., and Watling, D. P. (2004). Computation of Equilibrium Distributions of Markov Traffic-Assignment Models. TRANSPORTATION SCIENCE, 38(3), 331-342. https://doi.org/10.1287/trsc.1030.0052
  6. Hoffman, C., and Janko, J. (1990), Travel time as a basis of the LISB guidance strategy, Proceedings of IEEE Road Traffic Control Conference(pp. 6-10), New York.
  7. Horowitz, J. L. (1984). The stability of stochastic equilibrium in a two-link transportation network. Transportation Research Part B: Methodological, 18(1), 13-28
  8. Hu, T.-Y., and Mahmassani, H. S. (1997). Day-to-day evolution of network flows under real?time information and reactive signal control. Transportation Research Part C: Emerging Technologies, 5(1), 51-69. https://doi.org/10.1016/S0968-090X(96)00026-5
  9. Jayakrishnan, R., Mahmassani, H. S., and Hu, T. (1994). An evaluation tool for advanced traffic information and management systems in urban networks. Transportation Research Part C: Emerging Technologies, 2(3), 129-147. https://doi.org/10.1016/0968-090X(94)90005-1
  10. Jha, M., Madanat, S. and Peeta, S. (1998) Perception Updating and Day-to- Day Travel Choice Dynamics in Traffic Networks with Information Provision, Transportation Research, 6C, No. 3, pp. 189-212.
  11. Kaysi, I. (1991) Framework and Models for Provision of Driver Information System, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge.
  12. Kim, H., Oh, J. and Jayakrishnan, R. (2009) Effects of User Equilibrium Assumptions on Network Traffic Pattern, KSCE: Journal of Civil Engineering, 13(2), pp. 117-127. https://doi.org/10.1007/s12205-009-0117-5
  13. Koutsopoulos, H. N., and Xu, H. (1993). An information discounting routing strategy for advanced traveler information systems. Transportation Research Part C: Emerging Technologies, 1(3), 249-264. https://doi.org/10.1016/0968-090X(93)90026-C
  14. Mahmassani, H. S. (1990). Dynamic models of commuter behavior: Experimental investigation and application to the analysis of planned traffic disruptions. Transportation Research Part A: General, 24(6), 465-484. https://doi.org/10.1016/0191-2607(90)90036-6
  15. Mahmassani, H. S., and Chang, G. (1985). Dynamic aspects of departuretime choice behavior in a commuting syste: theoretical framework and experimental analysis. Transportation Research Record: Journal of the Transportation Research Board, 1037, 88-101.
  16. Mahmassani, H. S., and Chang, G. (1986). Experiments with departure time choice dynamics of urban commuters. Transportation Research Part B: Methodological, 20(4), 297-320. https://doi.org/10.1016/0191-2615(86)90045-7
  17. Mahmassani, H. S., and Jayakrishnan, R. (1991). System performance and user response under real-time information in a congested traffic corridor. Transportation Research Part A: General, 25(5), 293-307.
  18. May, A. D., and Montgomery, F. O. (1987). Factors affecting travel times on urban radial routes. Traffic Engineering and Control, 28, 452-458.
  19. Mohammadi, R. (1997). Journey time variability in the London area. Traffic Engineering and Control, 38, 250-257.
  20. Oh, J.-S., and Jayakrishnan, R. (2002). Emergence of Private Advanced Traveler Information System Providers and Their Effect on Traffic Network Performance. Transportation Research Record: Journal of the Transportation Research Board, 1783, 167-177.
  21. Sheffi, Y. (1985). Urban Transportation Networks: Equilibrium Analysis With Mathematical Programming Methods. Prentice Hall.
  22. Simon, H. A. (1955). A behavioral model of rational choice. The quarterly journal of economics, 69(1), 99-118. https://doi.org/10.2307/1884852
  23. Yang, F. and Zhang, D. (2009) Day-to-day stationary link flow pattern. Transportation Research Part B: Methodological, 43(1), 119-126. https://doi.org/10.1016/j.trb.2008.05.005
  24. Zhang, D., Nagurney, A. and Wu, J. (2001) On the equivalence between stationary link flow patterns and traffic network equilibria. Transportation Research Part B: Methodological, 35(8), 731-748. https://doi.org/10.1016/S0191-2615(00)00020-5