DOI QR코드

DOI QR Code

A GENERAL ITERATIVE METHOD BASED ON THE HYBRID STEEPEST DESCENT SCHEME FOR VARIATIONAL INCLUSIONS, EQUILIBRIUM PROBLEMS

  • Tian, Ming (College of Science, Civil Aviation University of China) ;
  • Lan, Yun Di (College of Science, Civil Aviation University of China)
  • 투고 : 2010.07.20
  • 심사 : 2010.10.04
  • 발행 : 2011.05.30

초록

To the best of our knowledge, it would probably be the first time in the literature that we clarify the relationship between Yamada's method and viscosity iteration correctly. We design iterative methods based on the hybrid steepest descent algorithms for solving variational inclusions, equilibrium problems. Our results unify, extend and improve the corresponding results given by many others.

키워드

참고문헌

  1. S. Adly, Perturbed algorithms and sensitivity analysis for a general class of variational inclusion, J. Math. Anal. Appl. 201 (1996), 609-630. https://doi.org/10.1006/jmaa.1996.0277
  2. G. L. Acedo, H. K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 67 (2007), 2258-2271. https://doi.org/10.1016/j.na.2006.08.036
  3. E. Blum and W. Oettli, From optimizition and variational inequalities to equilibrium prob- lems, Math. Study 63 (1994), 123-145.
  4. F. E. Browder, W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228. https://doi.org/10.1016/0022-247X(67)90085-6
  5. H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, The Netherlands, 1973.
  6. P. L. Conbettes and S. A. Hirstoaga, Equilibrium programming in Hilbert space, Journal of Nonlinear and Convex Analysis, 6 (2005), 117-136.
  7. S. S. Chang, Some problems and results in the study of nonlinear analysis, Nonlinear Anal. TMA 30 (1997), 4179-4208.
  8. S. -S. Chang, H. W. Joseph, and C. K. Chan, A new method for solving equilibrium problem fixed point problem with application to optimization, Nonlinear Analysis: Theory, Method and Appl. 70 (2009), 3307-3319.
  9. V. Colao, G. Marino, and H. K. Xu, An iterative method for finding common solutions of equilibrium and fixed point problem, J. Math. Anal. Appl. 344 (2008), 340-352. https://doi.org/10.1016/j.jmaa.2008.02.041
  10. B. Lemaire, Which fixed point does the iteration method select, in Recent Advanxes in Optimization (Trier; 1996), vol.452 of Lecture Notes in Economics and Mathematical Systems, (1997), 154-167.
  11. Ying Liu, A general iterative method for equilibrium problems and strict pseudo- contractions in Hilbert spaces, Nonlinear Analysis, TMA 71 (2009), 4852-4861. https://doi.org/10.1016/j.na.2009.03.060
  12. A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000), 46-55. https://doi.org/10.1006/jmaa.1999.6615
  13. G. Marino, H. K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), 43-52. https://doi.org/10.1016/j.jmaa.2005.05.028
  14. J. -W. Peng, D. S. Shyu, and J. -C. Yao, Common solutions of an iterative scheme for variational inclusions, equilibrium problems, and fixed point problems, J. of Inequalities and Appl. vol.2008, Articld ID720371, (2008), 15pages.
  15. S. Plubtieng, R. Punpaeng, A general iterative method for equilibrium problem and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 336 (2007), 455-469.
  16. S. Plubtieng, R. Punpaeng, A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings, Applied Math. and Computation. 197 (2008), 548-558. https://doi.org/10.1016/j.amc.2007.07.075
  17. S. Plubtieng, W. Sriprad, A viscosity approximation method for finding common solution of variational inclusions, equilibrium problems, and fixed point problems in Hilbert spaces, Fixed Point Theory and Applications, vol.2009, Article ID 567147, (2009), 20 pages.
  18. R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization. 14 (1976), 877-898. https://doi.org/10.1137/0314056
  19. S. M. Robinson, Generalized equations and their solutions-I: basic theory, Math. Program. 10 (1979), 128-141.
  20. Ming Tian, A general iterative algorithm for nonexpansive mappings in Hilbert spaces, Nonlinear Analysis. 73 (2010), 689-694. https://doi.org/10.1016/j.na.2010.03.058
  21. H. K. Xu, Iterative algorithms for nonlinear operators, Journal of the London Math. Soc. 66 (2002), 240-256. https://doi.org/10.1112/S0024610702003332
  22. H. K. Xu, Iterative approach to quadratic optimiation, J. Optim. Theory. Appl. 116 (2003), 659-678. https://doi.org/10.1023/A:1023073621589
  23. H. K. Xu, Viscosity approximation methods for nonexpansive mapping, J. Math. Anal. Appl. 298 (2004), 279-291. https://doi.org/10.1016/j.jmaa.2004.04.059
  24. I. Yamada, Hybrid steepest descent for the variational inequality problems over the intersection of fixed points sets of nonexpansive mapping, in: D. Butnariu, Y. Censor, S. Reich (Eds), In herently Parallel Algorithms in Feasibility and Optimization and Their Application, Elservier, New York. (2001), 473-504.
  25. H. Zhou, Convergence theorems of fixed points of k-strict pseudo-contractions in Hilbert space, Nonlinear Anal. 69 (2008), 456-462. https://doi.org/10.1016/j.na.2007.05.032