References
- R.Fletcher, S.Leyffer, Nonlinear programming without a penalty function, Math.Program. 91 (2) (2002) 239-269. https://doi.org/10.1007/s101070100244
- P.T.Boggs, J.W.Tolle, P.Wang, On the local convergence of quasi-newton methods for con- strained optimization, SIAM J.Control Optim. 20 (1982) 161-172. https://doi.org/10.1137/0320014
- X.W.Liu, Y.X.Yuan, A robust algorithm for optimization with general equality and inequal- ity constraint, SIAM J.Sci.Comput. 22 (2) (2002) 517-534.
- J.L.Zhang, X.S.Zhang, A robust SQP method for optimization with inequality constraints, J.Comput.Math. 21 (2) (2003) 247-256.
- J.L.Zhang, X.S.Zhang, A modified SQP method with nonmonotone linesearch technique, J.Global.Optim. 21 (2001) 201-218. https://doi.org/10.1023/A:1011942228555
- G.L.Zhou, A modified SQP method and its global convergence, J.Global Optim. 11 (1997) 193-205. https://doi.org/10.1023/A:1008255227457
- R.Fletcher, S.Leyffer, Nonlinear programming without a penalty function, Math.Program. 91 (2) (2002) 239-269. https://doi.org/10.1007/s101070100244
- P.Y.Nie, C.F.M, A trust region filter method for general nonlinear programming, Appl.Math.Comput. 172 (2006) 1000-1017. https://doi.org/10.1016/j.amc.2005.03.004
- F.Facchinei, S.Lucidi, Quadraticly and superlinearly convergent for the solution of inequal- ity constrained optimization problem, J.Optim.Theory Appl. 85 (1995) 265-289. https://doi.org/10.1007/BF02192227
- X.W.Liu, Y.X.Yuan, A robust algorithm for optimization with general equality and in- equality constraints, SIAM J.Sci.Comput. 22 (2) (2002) 517-534.
- J.V.Burke, S.P.Han, A robust SQP method, Math.Program. 43 (1989) 277-303. https://doi.org/10.1007/BF01582294
- S.P.Han, Superlinearly convergence varialbe metric algorithm fro general nonlinear pro- gramming problems, Math.Program. 11 (1976) 263-282. https://doi.org/10.1007/BF01580395
- M.J.D.Powell, A fast algorithm for nonliear constrained optimization calculations. In:Waston,G.A.(ed.) Numerical Analysis., pp.144-157. Springer-Verlag, Berlin( 1982).
- M.J.D.Powell, Variable metric methods for constrained optimization.In:Bachen,A.,et al.(eds.) Mathematical Programming- The state of Art. Springer-Verlag, Berlin (1982).
- L.Grippo, F.Lampariello, S.Ludidi, A nonmonotone line search technique for Newton's method, SIAM J.Numer.Anal. 23 (1986) 707-716. https://doi.org/10.1137/0723046
- J.F.Bonnons, E.R.Painer, A.L.Titts, J.L.Zhou, Avoiding the Maratos effect by means of nonmonotone linesearch, Inequality constrained problems-feasible iterates, SIAM J.Numer.Anal. 29 (1992) 1187-1202. https://doi.org/10.1137/0729072
- L.Grippo, F.Lampariello, S.Ladidi, A truncated Newton method with nonmonotone line search for unconstrained optimization, J.Optim.Theory Appl. 60 (1989) 401-419. https://doi.org/10.1007/BF00940345
- L.Grippo, F.Lampariello, S.Ludidi, A class of nonmonotone stablization method in un- constrained optimization, Numer.Math. 59 (1991) 779-805. https://doi.org/10.1007/BF01385810
- E.Panier, A.Tits, A avoiding the Maratos effect by means of nonmonotone line search,I:General constrained problems, SIAM J.Numer.Anal. 28 (1991) 1183-1195. https://doi.org/10.1137/0728063
- W.S.Sun, J.Han, J.Sun, Global convergence of nonmonotone descent methods for uncon- strained optimization problems, J.Comput.Appl.Math. 146 (2002) 89-98. https://doi.org/10.1016/S0377-0427(02)00420-X
- P.L.Toint, An assessment of nonmonotone line search technique for unconstrained opti- mization, SIAM J.Sci.Comput. 17 (1996) 725-739. https://doi.org/10.1137/S106482759427021X
- Z.S.Yu, D.G.Pu, A new nonmonotone line search technique for unconstrained optimiza- tion, J.Comput.Appl.Math. 219 (2008) 134-144. https://doi.org/10.1016/j.cam.2007.07.008
- N.Y.Deng, Y.Xiao, F.J.Zhou, Nonmonotone trust-region algorithm, J.Optim.Theory Appl. 26 (1993) 259-285.
- J.H.Fu, W.Y.Sun, Nonmonotone adaptive trust-region method for unconstrained optimiza- tion problems, Appl.Math.Comput. 163 (2005) 489-504. https://doi.org/10.1016/j.amc.2004.02.011
- X.Ke, J.Han, A nonmonotone trust-region algorithm for equality constrained optimization, Sci.in China 38A (1995) 683-695.
- X.Ke, G.Liu, D.Xu, A nonmonotone trust-region algorithm for unconstrained optimiza- tion, Chinese Sci.Bull. 41 (1996) 197-202.
- W.Y.Sun, Nonmonotone trust region method for solving optimization problems, Appl.Math.Comput. 156 (2004) 159-174. https://doi.org/10.1016/j.amc.2003.07.008
- P.L.Toint, A nonmonotone trust region algorithm for nonlinear optimization subject to convex constraints, Math.Program. 77 (1997) 69-94.
- W.Hock, K.Schittkowski, Test examples for nonlinear programming codes, in:Lecture Notes inEconom. and Math.Systems, vol.187, Springer-Verlag, Berlin, 1981.
- M.Ulbrich, S.Ulbrich, Nonmonotone trust region methods for nonlinear equality con- strained optimization without a penalty function, Math.Program.Ser.B 95 (2003) 103-135. https://doi.org/10.1007/s10107-002-0343-9
- K.Su, D.G.Pu, A nonmonotone filter trust region method for nonlinear constrained opti- mization, J.Comput.Appl.Math. 223 (1) (2009) 230-239. https://doi.org/10.1016/j.cam.2008.01.013