DOI QR코드

DOI QR Code

A MODIFIED NONMONOTONE FILTER TRUST REGION METHOD FOR SOLVING INEQUALITY CONSTRAINED PROGRAMMING

  • Wang, Hua (School of Mathematics and Information, Shanghai Lixin University of Commerce) ;
  • Pu, Dingguo (Department of Mathematics, Tongji University)
  • Received : 2010.06.20
  • Accepted : 2010.09.03
  • Published : 2011.05.30

Abstract

SQP method is one of the most important methods for solving nonlinear programming. But it may fail if the quadratic subproblem is inconsistent. In this paper, we propose a modified nonmonotone filter trust region method in which the QP subproblem is consistent. By means of nonmonotone filter, this method has no demand on the penalty parameter which is difficult to obtain. Moreover, the restoration phase is not needed any more. Under reasonable conditions, we obtain the global convergence of the algorithm. Some numerical results are presented.

Keywords

References

  1. R.Fletcher, S.Leyffer, Nonlinear programming without a penalty function, Math.Program. 91 (2) (2002) 239-269. https://doi.org/10.1007/s101070100244
  2. P.T.Boggs, J.W.Tolle, P.Wang, On the local convergence of quasi-newton methods for con- strained optimization, SIAM J.Control Optim. 20 (1982) 161-172. https://doi.org/10.1137/0320014
  3. X.W.Liu, Y.X.Yuan, A robust algorithm for optimization with general equality and inequal- ity constraint, SIAM J.Sci.Comput. 22 (2) (2002) 517-534.
  4. J.L.Zhang, X.S.Zhang, A robust SQP method for optimization with inequality constraints, J.Comput.Math. 21 (2) (2003) 247-256.
  5. J.L.Zhang, X.S.Zhang, A modified SQP method with nonmonotone linesearch technique, J.Global.Optim. 21 (2001) 201-218. https://doi.org/10.1023/A:1011942228555
  6. G.L.Zhou, A modified SQP method and its global convergence, J.Global Optim. 11 (1997) 193-205. https://doi.org/10.1023/A:1008255227457
  7. R.Fletcher, S.Leyffer, Nonlinear programming without a penalty function, Math.Program. 91 (2) (2002) 239-269. https://doi.org/10.1007/s101070100244
  8. P.Y.Nie, C.F.M, A trust region filter method for general nonlinear programming, Appl.Math.Comput. 172 (2006) 1000-1017. https://doi.org/10.1016/j.amc.2005.03.004
  9. F.Facchinei, S.Lucidi, Quadraticly and superlinearly convergent for the solution of inequal- ity constrained optimization problem, J.Optim.Theory Appl. 85 (1995) 265-289. https://doi.org/10.1007/BF02192227
  10. X.W.Liu, Y.X.Yuan, A robust algorithm for optimization with general equality and in- equality constraints, SIAM J.Sci.Comput. 22 (2) (2002) 517-534.
  11. J.V.Burke, S.P.Han, A robust SQP method, Math.Program. 43 (1989) 277-303. https://doi.org/10.1007/BF01582294
  12. S.P.Han, Superlinearly convergence varialbe metric algorithm fro general nonlinear pro- gramming problems, Math.Program. 11 (1976) 263-282. https://doi.org/10.1007/BF01580395
  13. M.J.D.Powell, A fast algorithm for nonliear constrained optimization calculations. In:Waston,G.A.(ed.) Numerical Analysis., pp.144-157. Springer-Verlag, Berlin( 1982).
  14. M.J.D.Powell, Variable metric methods for constrained optimization.In:Bachen,A.,et al.(eds.) Mathematical Programming- The state of Art. Springer-Verlag, Berlin (1982).
  15. L.Grippo, F.Lampariello, S.Ludidi, A nonmonotone line search technique for Newton's method, SIAM J.Numer.Anal. 23 (1986) 707-716. https://doi.org/10.1137/0723046
  16. J.F.Bonnons, E.R.Painer, A.L.Titts, J.L.Zhou, Avoiding the Maratos effect by means of nonmonotone linesearch, Inequality constrained problems-feasible iterates, SIAM J.Numer.Anal. 29 (1992) 1187-1202. https://doi.org/10.1137/0729072
  17. L.Grippo, F.Lampariello, S.Ladidi, A truncated Newton method with nonmonotone line search for unconstrained optimization, J.Optim.Theory Appl. 60 (1989) 401-419. https://doi.org/10.1007/BF00940345
  18. L.Grippo, F.Lampariello, S.Ludidi, A class of nonmonotone stablization method in un- constrained optimization, Numer.Math. 59 (1991) 779-805. https://doi.org/10.1007/BF01385810
  19. E.Panier, A.Tits, A avoiding the Maratos effect by means of nonmonotone line search,I:General constrained problems, SIAM J.Numer.Anal. 28 (1991) 1183-1195. https://doi.org/10.1137/0728063
  20. W.S.Sun, J.Han, J.Sun, Global convergence of nonmonotone descent methods for uncon- strained optimization problems, J.Comput.Appl.Math. 146 (2002) 89-98. https://doi.org/10.1016/S0377-0427(02)00420-X
  21. P.L.Toint, An assessment of nonmonotone line search technique for unconstrained opti- mization, SIAM J.Sci.Comput. 17 (1996) 725-739. https://doi.org/10.1137/S106482759427021X
  22. Z.S.Yu, D.G.Pu, A new nonmonotone line search technique for unconstrained optimiza- tion, J.Comput.Appl.Math. 219 (2008) 134-144. https://doi.org/10.1016/j.cam.2007.07.008
  23. N.Y.Deng, Y.Xiao, F.J.Zhou, Nonmonotone trust-region algorithm, J.Optim.Theory Appl. 26 (1993) 259-285.
  24. J.H.Fu, W.Y.Sun, Nonmonotone adaptive trust-region method for unconstrained optimiza- tion problems, Appl.Math.Comput. 163 (2005) 489-504. https://doi.org/10.1016/j.amc.2004.02.011
  25. X.Ke, J.Han, A nonmonotone trust-region algorithm for equality constrained optimization, Sci.in China 38A (1995) 683-695.
  26. X.Ke, G.Liu, D.Xu, A nonmonotone trust-region algorithm for unconstrained optimiza- tion, Chinese Sci.Bull. 41 (1996) 197-202.
  27. W.Y.Sun, Nonmonotone trust region method for solving optimization problems, Appl.Math.Comput. 156 (2004) 159-174. https://doi.org/10.1016/j.amc.2003.07.008
  28. P.L.Toint, A nonmonotone trust region algorithm for nonlinear optimization subject to convex constraints, Math.Program. 77 (1997) 69-94.
  29. W.Hock, K.Schittkowski, Test examples for nonlinear programming codes, in:Lecture Notes inEconom. and Math.Systems, vol.187, Springer-Verlag, Berlin, 1981.
  30. M.Ulbrich, S.Ulbrich, Nonmonotone trust region methods for nonlinear equality con- strained optimization without a penalty function, Math.Program.Ser.B 95 (2003) 103-135. https://doi.org/10.1007/s10107-002-0343-9
  31. K.Su, D.G.Pu, A nonmonotone filter trust region method for nonlinear constrained opti- mization, J.Comput.Appl.Math. 223 (1) (2009) 230-239. https://doi.org/10.1016/j.cam.2008.01.013