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SYMMETRY REDUCTIONS, VARIABLE TRANSFORMATIONS

AND EXACT SOLUTIONS TO THE SECOND-ORDER PDES†

HANZE LIU∗ AND LEI LIU

Abstract. In this paper, the Lie symmetry analysis is performed on the
three mixed second-order PDEs, which arise in fluid dynamics, nonlinear
wave theory and plasma physics, etc. The symmetries and similarity reduc-
tions of the equations are obtained, and the exact solutions to the equations
are investigated by the dynamical system and power series methods. Then,
the exact solutions to the general types of PDEs are considered through a
variable transformation. At last, the symmetry and integration method is
employed for reducing the nonlinear ODEs.
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1. Introduction

In [1], J. Li considered the following two equations by using the dynamical
system method. One is the Vakhnenko equation (VE) is given by ∂

∂xDu+u = 0,

where D := ∂
∂t+u ∂

∂x , which describes high-frequency wave in a relaxing medium.
The other is the reduced Ostrovsky equation (OE) (ut + c0ux + αuux)x = γu,
where c0 denotes the velocity of the dispersionless linear waves, α is a nonlinear
coefficient, and γ is the dispersion coefficient. This equation was reported when
finding of a so-called inverted loop-soliton solutions [2-4]. The exact explicit
parametric representations of the solitary cusp wave solutions and the periodic
cusp wave solutions are obtained. Essentially, these solutions are all traveling
wave solutions.

We know that the Lie symmetry analysis is a powerful method for tackling
exact solutions to partial differential equations (PDEs) (see e.g., [5-15] and ref-
erences therein). Furthermore, the combination of Lie symmetry analysis and
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dynamical system method is a feasible approach for dealing with exact explicit
solutions to nonlinear evolution equations (NLEEs). Recently, we have stud-
ied several nonlinear systems by means of the approach [9,13], the symmetries,
similarity reductions and exact solutions (including traveling wave solutions) to
these equations are obtained. In the present paper, we will consider the following
mixed second-order PDEs:

1. The reduced Ostrovsky equation (OE):

uxt + α(uux)x + βuxx + γu = 0, (1)

where and in what follows, u = u(x, t) denotes the unknown function, all the
parameters are arbitrary real numbers.

2. The general Vakhnenko equation (VE):

uxt + λ(uux)x + µu = 0. (2)

3. The special case, it is the following mixed second-order equation:

uxt + σu = 0. (3)

Note that Eq. (1) is the general reduced Ostrovsky equation. When λ =
µ = 1, Eq. (2) is the Vakhnenko equation [1]. While Eq. (3) is the degen-
erate case for many important mixed second-order nonlinear NLEEs, such as
the Vakhnenko equation (1), the reduced Ostrovsky equation (2) and the short
pulse equation [9], etc. These mixed second-order nonlinear PDEs are of great
importance in both nonlinear theory and physical applications. Furthermore,
the three equations are of the general form as follows:

uxt = P (u), (4)

where P (u) = P (u, ux, uxx) is a given sufficiently smooth function of the vari-
ables. In particular, Eq. (3) is written as the following general form

uxt = p(u), (5)

where p is a given function with respect to the dependent variable u. In practice,
many physical, mechanical and engineering models can be depicted by such
equations (4) and (5). More importantly, we will show that the other types of
equations

utt = auxx + q(u) (6)

can be transformed into Eq. (5) later, where a 6= 0 is an arbitrary parameter, q
is a given function with respect to the dependent variable u.

The main purpose of this paper is to investigate the symmetries and exact
solutions to the equations by Lie symmetry analysis and the dynamical system
method. The remainder of this paper is organized as follows. In Section 2,
we perform Lie symmetry analysis on Eqs. (1), (2) and (3), the symmetries
and similarity reductions are presented. In Section 3, the exact solutions to
the three equations are investigated by the dynamical system and power series
methods. In Section 4, the general equation (6) is transformed into Eq. (5)
through a variable transformation, then the exact solutions to such equations
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can be obtained successively. In Section 5, some further discussion on the ODE
are made by the symmetry and integration method. Finally, the conclusion and
some remarks will be given in Section 6.

2. Symmetry reductions for Eqs. (1), (2) and (3)

First of all, we note that Eqs. (1) and (2) can be written as the following
forms:

uxt + αu2
x + αuuxx + βuxx + γu = 0, (7)

and

uxt + λu2
x + λuuxx + µu = 0. (8)

Recall that the vector field of a PDE is as follows:

V = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u
, (9)

where the coefficient functions ξ(x, t, u), τ(x, t, u) and φ(x, t, u) of the vector
field are to be determined later.

The symmetries of Eqs. (1), (2) and (3) will be generated by the vector field of
the form (9), respectively. Applying the second prolongation pr(2)V=pr(1)V +
φxx ∂

∂uxx
+ φxt ∂

∂uxt
+ φtt ∂

∂utt
of V to the three equations, then the standard

symmetry group calculation method leads to the following symmetries of the
three PDEs:

For Eq. (1), we have

V11 =
∂

∂x
, V12 =

∂

∂t
, V13 = (x− 2γt)

∂

∂x
− t

∂

∂t
+ 2u

∂

∂u
. (10)

For Eq. (2), we have

V21 =
∂

∂x
, V22 =

∂

∂t
, V23 = x

∂

∂x
− t

∂

∂t
+ 2u

∂

∂u
. (11)

For Eq. (3), we have

V31 =
∂

∂x
, V32 =

∂

∂t
, V33 = x

∂

∂x
− t

∂

∂t
, V34 = u

∂

∂u
, Vs = s

∂

∂u
, (12)

where s = s(x, t) satisfies Eq. (3).
Similar to Refs. [9,10,13], it is easy to check that the three vector fields (10),

(11) and (12) are closed under the Lie bracket, respectively. Therefore the Lie
algebra of symmetries of Eqs. (1) and (2) are generated by the three vector fields
{V11, V12, V13} and {V21, V22, V23}, respectively. For Eq. (3), it is spanned by
the four vector fields {V31, V32, V33, V34} and the infinite-dimensional subalgebra
Vs = s ∂

∂u , where s = s(x, t) is an arbitrary solution to Eq. (3).
In what follows, we will reduce the three equations (1), (2) and (3) to ordinary

differential equations (ODEs) by the similarity reduction method.
(i) For V13, we have u = t−2f(ξ), where ξ = xt − γt2. Substituting into Eq.

(1), we get

αf ′2 + αff ′′ + ξf ′′ − f ′ + βf = 0, (13)
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where f ′ = df
dξ .

(ii) For V = cV11 − V12, we have u = f(ξ), where ξ = x + ct. Substituting
into Eq. (1), we get

αf ′2 + αff ′′ + (β + c)f ′′ + γf = 0, (14)

where f ′ = df
dξ , c 6= 0 is an arbitrary constant.

(iii) For V23, we have u = t−2f(ξ), where ξ = xt. Substituting into Eq. (2),
we get

λf ′2 + λff ′′ + ξf ′′ − f ′ + µf = 0, (15)

where f ′ = df
dξ .

(iv) For V = cV21 − V22, we have u = f(ξ), where ξ = x + ct. Substituting
into Eq. (2), we get

λf ′2 + λff ′′ + cf ′′ + µf = 0, (16)

where f ′ = df
dξ , c 6= 0 is an arbitrary constant.

(v) For V33, we have u = f(ξ), where ξ = xt. Substituting into Eq. (3), we
get

ξf ′′ + f ′ + σf = 0, (17)

where f ′ = df
dξ .

(vi) For V = cV31 + V32, we have u = f(ξ), where ξ = x − ct. Substituting
into Eq. (3), we get

cf ′′ − σf = 0, (18)

where f ′ = df
dξ , v 6= 0 is an arbitrary constant.

(vii) For V = V31 + vV34, we have u = evxf(ξ), where ξ = t. Substituting
into Eq. (3), we get

vf ′ + σf = 0, (19)

where f ′ = df
dξ , v 6= 0 is an arbitrary constant.

(viii) For V = V32 + vV34, we have u = evtf(ξ), where ξ = x. Substituting
into Eq. (3), we get

vf ′ + σf = 0, (20)

where f ′ = df
dξ , v 6= 0 is an arbitrary constant.

(ix) For V = V33 + vV34, we have u = t−vf(ξ), where ξ = xt. Substituting
into Eq. (3), we get

ξf ′′ + (1− v)f ′ + σf = 0, (21)

where f ′ = df
dξ , v 6= 0 is an arbitrary constant.
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3. Exact solutions to the equations

By exact solutions, we mean those that can be obtained from some ODEs or,
in general, from PDEs of lower order than the original PDE [16]. In terms of this
definition, the exact solutions to the three equations (1), (2) and (3) are obtained
actually in Section 2. But we still want to investigate the explicit solutions to
the equations. In this section, we deal with the exact explicit solutions to the
three equations.

3.1. The traveling wave solutions. In view of Eqs. (14), (16) and (18), we
can get the traveling wave solutions to Eqs. (1), (2) and (3), respectively. As is
well known, the symmetries and first integrals are two fundamental structures for
ordinary differential equations (ODEs). For example, based on the symmetries,
the properties of a system can be explored. By means of symmetries or first
integrals, the exact explicit solutions can be obtained immediately.

Firstly, it should be noted that Eq. (14) is equivalent to the planar system

df

dξ
= y,

dy

dξ
= − αy2 + γf

αf + β + c
. (22)

System (22) has the first integral

H(f, y) = y2(αf + β + c)2 + γf2(
2

3
αf + β + c) = h. (23)

Similarly, Eq. (16) is equivalent to the planar system

df

dξ
= y,

dy

dξ
= −λy2 + µf

λf + c
. (24)

System (24) has the first integral

H(f, y) = y2(λf + c)2 + µf2(
2

3
λf + c) = h. (25)

Then, based on the first integrals (23) and (25), by the dynamical system
method, we can obtain the traveling wave solutions to Eqs. (1) and (2), respec-
tively. The details are omitted here (see [1], pp. 911-913). Thus, we need to
consider the traveling wave solutions to Eq. (3) only. In view of its reduced Eq.
(18), we have the following results:

When σc > 0, Eq. (18) has the solution f(ξ) = c1e
√

σ
c ξ + c2e

−
√

σ
c ξ. The

traveling wave solution to Eq. (3) is

u(x, t) = c1e
√

σ
c (x−ct) + c2e

−
√

σ
c (x−ct), (26)

where c1, c2 are arbitrary constants.
When σc < 0, Eq. (18) has the solution f(ξ) = c1 cos

√−σ
c ξ + c2 sin

√−σ
c ξ.

The traveling wave solution to Eq. (3) is

u(x, t) = c1 cos

√
−σ

c
(x− ct) + c2 sin

√
−σ

c
(x− ct), (27)

where c1, c2 are arbitrary constants.
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3.2. The exact power series solutions. Note that Eqs. (13), (15), (17) and
(21) are nonlinear nonautonomous ODEs. To our knowledge, there is no any
general methods for dealing with such equations. Now, we tackle the solutions
by using the power series method. As an example, we need to consider Eqs. (13)
and (17) only, the other equations are handled similarly.

We will seek a solution to Eq. (13) in a power series of the form

f(ξ) =

∞∑
n=0

cnξ
n. (28)

Substituting (28) into (13) and comparing coefficients, we obtain

c2 =
1

2αc0
(c1 − αc21 − βc0). (29)

Generally, for n ≥ 2, we have

cn+1 =
−1

n(n+ 1)αc0
[(n− 2)ncn + α

n∑

k=1

n(n+ 1− k)ckcn+1−k + βcn−1]. (30)

Thus, for arbitrary chosen c0 and c1, from (29), we can get c2. On the other hand,
in view of (30), we have c3 = −1

6αc0
(6αc1c2 + βc1), c4 = −1

12αc0
(3c3 + 12αc1c3 +

6αc22 + βc2), and so on.
Therefore, the other terms of the sequence {cn}∞n=0 can be determined suc-

cessively from (30) in a unique manner. This implies that for Eq. (13), there
exists a power series solution (28) with the coefficients given by (29) and (30).
Furthermore, we can show that the convergence of the power series solution (28)
to Eq. (13) (see [9,10,13]). Thus, the power series solution (28) is the exact
analytic solution to this equation.

The power series solution to Eq. (13) can be written as following:

f(ξ) = c0 + c1ξ + c2ξ
2 +

∞∑
n=2

cn+1ξ
n+1 = c0 + c1ξ +

1

2αc0
(c1 − αc21 − βc0)ξ

2

+

∞∑
n=2

−1

n(n+ 1)αc0
[(n− 2)ncn+α

n∑

k=1

n(n+1− k)ckcn+1−k +βcn−1]ξ
n+1. (31)

Thus, the exact analytic solution to Eq. (1) is

u(x, t) = c0t
−2 + c1(x− γt)t−1 +

1

2αc0
(c1 − αc21 − βc0)(x− γt)2

+

∞∑
n=2

−1

n(n+ 1)αc0
[(n−2)ncn+α

n∑

k=1

n(n+1−k)ckcn+1−k+βcn−1](x−γt)n+1tn−1,

(32)
where ci (i = 0, 1) are arbitrary constants.

Suppose that Eq. (17) is a solution in a power series of the form (13). Similar
to Eq. (13), we obtain

c1 = −σc0. (33)
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Generally, for n ≥ 2, we have

cn = (−1)n
σn

(n!)2
c0. (34)

Thus, for arbitrary chosen c0, from (33), we can get c1. On the other hand, in

view of (34), we have c2 = σ2

4 c0, c3 = −σ3

36 c0, c4 = σ4

576c0, and so on.
The power series solution to Eq. (17) can be written as following:

f(ξ) = c0 + c1ξ +

∞∑
n=2

cnξ
n = c0 − σc0ξ + c0

∞∑
n=2

(−1)n
σn

(n!)2
ξn. (35)

Thus, the exact analytic solution to Eq. (3) is

u(x, t) = c0 + c1xt+

∞∑
n=2

cn(xt)
n = c0 − σc0xt+ c0

∞∑
n=2

(−1)n
σn

(n!)2
(xt)n, (36)

where c0 is an arbitrary constant. Moreover, it is easy to check that the con-
vergence of the power series solution for all x ∈ R by using the elementary
criterions.

3.3. The exact explicit solutions. In view of Eq. (19), we have the solution
is f(ξ) = ce−

σ
v ξ. Thus, the solution to Eq. (3) is

u(x, t) = cevx−
σ
v t, (37)

where c and v 6= 0 are arbitrary constants.
On the other hand, for Eq. (20), we have the solution is f(ξ) = ce−

σ
v ξ. Thus,

the other solution to Eq. (3) is

u(x, t) = cevt−
σ
v x, (38)

where c and v 6= 0 are arbitrary constants.

4. Transformation and exact solutions to Eq. (6)

In both of the preceding sections, the symmetry reductions and exact solutions
to Eqs. (1), (2) and (3) are obtained. In this section, we consider the general
equations (5) and (6). Setting

ξ =
1

2

√
− b

a
(x−√

at), η =
1

2

√
− b

a
(x+

√
at), (39)

where b 6= 0 is a parameter related to the function q generally. Substituting (39)
into Eq. (6), we have buξη = q(u), that is uξη = 1

b q(u). This is the form of Eq.
(5) clearly. Thus, Eq. (6) is transformed into Eq. (5) through the transformation
(39). Therefore, based on the solutions to Eq. (5), the exact solutions to Eq.
(6) can be obtained successively.

For example, we consider the following one-dimensional wave equation

utt = auxx + bu, (40)



570 Hanze Liu, Lei Liu

where a, b are arbitrary parameters. Plugging (39) into (40), we have

uξη = u. (41)

Thus, we transform Eq. (40) into Eq. (3) by the transformation (39). Further-
more, Eq. (3) has a solution (37), so we can get the exact solution to Eq. (40)
is

u(x, t) = c exp[
v

2

√
− b

a
(x−√

at) +
1

2v

√
− b

a
(x+

√
at)], (42)

where c and v 6= 0 are arbitrary constants.
On the other hand, Eq. (3) has a solution (38), so we can get the other exact

solution to Eq. (40) is

u(x, t) = c exp[
v

2

√
− b

a
(x+

√
at) +

1

2v

√
− b

a
(x−√

at)], (43)

where c and v 6= 0 are arbitrary constants.
While for the more general types of equations utt = auxx + Q(u), where

Q(u) = Q(u, ux, uxx), it is difficult to transform this type of equation into Eq.
(4) using the similar transformation generally. But for some specific equations,
this approach is feasible. The details are omitted here.

5. Further discussion by the symmetry and integration method

In Subsection 3.2, we obtained the exact power series solutions to Eqs. (13)
and (17). Now, we make some further discussion on Eq. (17). By the integration
method based on the invariants of the group, we know that if we get a one-
parameter symmetry group of an ODE, then we can reduce the order of the
equation by one.

Clearly, Eq. (17) is invariant under the group of scale transformation (ξ, f) 7→
(ξ, eεf), where ε is an arbitrary real number. This scaling group corresponds to
the infinitesimal generator V = f ∂

∂f . Furthermore, we have V ξ = 0, V f = f .

Letting w = log f , we have fξ = ewwξ, fξξ = eww2
ξ + ewwξξ. Plugging into (17),

we get

wξξ + w2
ξ +

1

ξ
wξ +

σ

ξ
= 0.

Setting wξ = z, we obtain

dz

dξ
= −z2 − 1

ξ
z − σ

ξ
. (44)

Thus, we reduce Eq. (17) to a Riccati equation (44).
Furthermore, this equation can be simplified also. In fact, suppose that z =

u− 1
2ξ , substituting it into (44), we have

du

dξ
= −u2 − σ

ξ
− 1

4ξ2
, (45)

there is not any linear term in this equation.
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6. Conclusion and remarks

In this paper, we have obtained the symmetries of the three mixed second-
order PDEs. The exact solutions based on the similarity reductions are inves-
tigated. Then the first integrals and exact analytic solutions are given for the
the first time in this paper. In addition, we have shown that Eq. (6) can be
transformed into Eq. (5) by the transformation (39), and the exact solutions to
Eq. (40) are given simultaneously. At last, we reduce the second-order nonlin-
ear ODE to a first-order equation by using symmetry and integration method.
This is a very powerful method for dealing with exact solutions of ODEs and is
worthy of studying further.

On the other hand, from the geometric point of view, the symmetries (10)
- (12) of the three equations are geometric symmetries (point transformations)
since they act geometrically on the underlying space X ×U (see e.g., [5,6]). So,
are there generalized symmetries and any other forms of exact solutions to the
equations? We hope to investigate in the future.

Remark 6.1. We would like to reiterate that the power series solutions which
have been obtained in subsection 3.2 are exact analytic solutions. Moreover, we
can see that such power series solutions converge quickly, so it is convenient for
computations in both theory and applications.

Remark 6.2. Note that the Riccati equation (45) cannot be integrated by the
elementary functions. For dealing with the exact solutions to such nonlinear
ODEs, the power series method is a useful tool, especially in numerical analysis
and physical applications.
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