Enhanced Dual Contouring method by using the Feature of Spherical Coordinate System

구면 좌표계의 특성을 이용한 듀얼 컨투어링 기법 개선

  • 김종현 (고려대학교 컴퓨터전파통신학과) ;
  • 박태정 (고려대학교 컴퓨터전파통신학과) ;
  • 김창헌 (고려대학교 컴퓨터전파통신학과)
  • Received : 2010.11.05
  • Accepted : 2011.04.06
  • Published : 2011.06.01

Abstract

The Dual Contouring method has an advantage over the primal polygonization methods like the Marching Cube method in terms of better expression of sharp features. In this paper, the Dual Contouring method is implemented in Spherical coordinates, not the Cartesian ones to examine some characteristics. For this purpose, our octree is defined in Spherical coordinates, which is called "S-Octree". Among some characteristics, the proposed Dual Contouring method in the S-Octree tends to produce less vertices at the same octree level. In particular, for any surface models close to surface sphere, the generated mesh surfaces are smoother and more detailed than those of the Cartesian Dual Contouring approach for specific applications including mesh compression where available geometric information is quite limited.

본 논문에서는 일반적으로 직교 좌표계에서 구현되는 듀얼 컨투어링을 구면 좌표계에서 구현하고 그 특성들을 살펴 본다. 듀얼 컨투어링을 구면 좌표계에서 구현하기 위해서 먼저 팔진 트리(octree)를 구면 좌표계에서 정의한다. 이렇게 정의된 구면 팔진 트리(spherical octree)를 기반으로 하는 듀얼 컨투어링 방식은 SDF(signed distance field) 등의 점진적 폴리곤화에서 직교 좌표계에서의 팔진 트리에 비해 동일한 트리 레벨에서 생성되는 버텍스(vertex) 갯수가 줄어드는 특징을 가진다. 특히 구면에 가까운 모델의 경우 압축 등 이용 가능한 정보가 제한적인 애플리케이션에서 직교 좌표계 보다 세밀하고 부드러운 곡면을 얻을 수 있는 장점이 있다.

Keywords

References

  1. James F. Blinn, "A Generalization of Algebraic Surface Drawing," ACM Transactions on Graphics, vol. 1, no. 3, pages. 235-256, 1982. https://doi.org/10.1145/357306.357310
  2. Bloomenthal, Jules, "Polygonization of Implicit Surfaces," Computer-Aided Geometric Design, vol. 5, no. 4, pages 341-355, 1988. https://doi.org/10.1016/0167-8396(88)90013-1
  3. Bloomenthal, Jules, Introduction to Implicit Surfaces, Morgan Kaufmann Publishers, Inc., San Francisco, 1997.
  4. Karkanis, Tasso, and A. James Stewart, "Curvature-Dependant Triangulation of Implicit Surfaces," IEEE Computer Graphics and Application, vol. 22, no. 2, pages 60-69, March 2001.
  5. Velho, Luiz, "Simple and Efficient Polygonization of Implicit Surfaces," Journal of graphics tools, vol. 1, no. 2, pages. 5-24, 1996 https://doi.org/10.1080/10867651.1996.10487456
  6. Lorensen William E., and Harvey E. Cline, "Marching Cubes : A High Resolution 3D Surface Construction Algorithm," Computer Graphics (Siggraph '87 Proceedings), pages. 163-169, July 1987.
  7. Gregory M. Nieson. "Dual marching cubes," In Proc. of IEEE Visualization 2004, pages 489-496 2004.
  8. Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. "Dual contouring of hermite data," In Siggraph 2002, Computer Graphics Proceedings, page 339-346. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2002.
  9. Joe Warren. and Scott Schaefer. "Dual marching cubes :Primal contouring of dual grids," In Pacific Graphics 2004, pages 70-76, 2004.
  10. M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, "Computational Geometry" 2nd pages 86-90, 1999.