An Interactive Image Transmission For Mobile Devices

모바일 시스템을 위한 인터랙터브 이미지 전송

  • 임낙권 (홍익대학교 컴퓨터공학과) ;
  • 김대영 (홍익대학교 컴퓨터공학과) ;
  • 이혜영 (홍익대학교 컴퓨터공학과)
  • Received : 2010.12.30
  • Accepted : 2011.03.23
  • Published : 2011.06.01

Abstract

This paper presents an interactive progressive image transmission method, which enables a remote user to interactively select and transmit preferred regions from an index image. Our enhanced quadtree decomposition using PSNR-based rules and new implicit quadtree coding provide better rate-distortion performance than previous quadtree coders as well as leading bit plane methods. An adaptive traversal of child nodes is introduced for better visual display of restored images. Depth-first traversal combined with breadth-first traversal of the quadtree to accomplish interactive transmission as presented, results in a method that provides competitive performance at a low level of computational complexity. Moreover, our decoding requires only simple arithmetic which is enabling our method to be used for real-time mobile applications.

본 논문에서는 원격 사용자에게 이미지 전송 시 임의 접근성(Interactive Selection)을 제공하여 사용자가 선호하는 영역을 우선적으로 전송할 수 있도록 하는 점진적 이미지 전송(Progressive Image Transmission) 기법 제안한다. 쿼드트리를 이용하여 간략화 된 이미지를 먼저 인덱스(Index image)로 제공하고 사용자가 선택한 영역만을 전송함으로써 사용자와 실시간 상호작용이 가능하고, 동시에 네트워크 대역폭과 메모리 요구량을 최소화하는 이점을 가진다. 본 연구는 영상처리 분야에서 사용되는 PSNR(Peak Signal-to-Noise Ratio) 왜곡정도를 기준으로 쿼드트리를 분할하는 체계적인 방법과 새로운 쿼드트리 압축 기법을 제안하였다. 그 결과, 공간분할을 사용한 기존 알고리즘보다 왜곡대비 압축률을 향상시켰다. 또한, 쿼드트리의 각 노드 접근에 적응 순회(Adaptive Traversal) 방식을 도입하여 기존 고정 순회 방식보다 전송 이미지의 품질 향상에 기여하였으며, 너비 우선 탐색(Breadth First Traversal)과 깊이 우선 탐색(Depth First Traversal)을 결합한 알고리즘으로 이미지의 임의부분 선택권을 제공한 수 있는 기반을 마련하였다. 본 알고리즘은 간단한 연산으로 구성하여 계산 복잡도틀 낮추어 자원 사용을 최소화하고 높은 전송 효율을 지녔기 때문에 모바일 기기에서 실시간으로 활용이 가능하다.

Keywords

References

  1. B. Aiazzi, L. Alparone, and S. Baronti, "A reduced laplacian pyramid for lossless and progressive image communication," IEEE Trans. Communications, vol. 44, no. 1, pp. 18-22, Jan. 1996. https://doi.org/10.1109/26.476090
  2. P. Akhtar, M. Bhatti, T. Ali, and M. Muqeet, "Significance of region of interest applied on MRI image in teleradiology-telemedicine," In The 1st International Conference on Bioinformatics and Biomedical Engineering, 2007. ICBBE, pp. 1331-1334, 2007.
  3. S. Choe, J. Kim, H. Lee, and S. Lee, "Random accessible mesh compression using mesh chartification," IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 1, pp. 160-173, 2009. https://doi.org/10.1109/TVCG.2008.64
  4. K.-L. Chung, and S.-Y. Tseng, "New progressive image transmission based on quadtree and shading approach with resolution control," Pattern Recognition Letters, vol,22, no.14, pp,1545-1555, 2001. https://doi.org/10.1016/S0167-8655(01)00106-4
  5. B. C. Dhara, and B. Chanda, "Color image compression based on block truncation coding using pattern fitting principle," Pattern Recognition, vol. 40, no. 9, pp. 2408-2417, 2007. https://doi.org/10.1016/j.patcog.2006.12.022
  6. C. Fogg, D. J. Legall, J. L. Mitchell, and W. B. Pennebaker, MPEG Video Compression Standard(Digital Multimedia Standards Series), Springer.
  7. M. Goldberg, and L. Wang, "Comparative performance of pyramid data structures for progressive image transmission," IEEE Trans. Communications, vol. 39, no. 4, pp. 540-548, Apr. 1991. https://doi.org/10.1109/26.81742
  8. Y.-C. Hu, and J.-H jiang, "Low-complexity progressive image transmission scheme based on quadtree segmentation," Real-Time Imaging, vol. 11, no. 1, pp. 59-70, 2005. https://doi.org/10.1016/j.rti.2005.04.005
  9. Y.-C. Hu, and S.-H. Wu, "Image progressive transmission by quadtree and block truncation coding," The Imaging Science Journal, vol. 56, no. 3, pp. 153-162, Jun. 2008. https://doi.org/10.1179/174313108X281317
  10. J. H. Jiang, C. C. Chang, and T. S. Chen, "Selective progressive image transmission using diagonal sampling technique," In Proceedings of International Symposium on Digital Media Information Base, Nara, Japan, pp. 59-67, 1997.
  11. W. B. Pennebaker, and J. L. Mitchell, JPEG : Still Image Data Compression Standard (Digital Multimedia Standards), Springer. 1993.
  12. H. Samet, "The quadtree and related hierarchical data structures," ACM Computing Surveys, vol. 16, no. 2, pp. 187-260, 1984. https://doi.org/10.1145/356924.356930
  13. E. Shusterman, and M. Feder, "Image compression via improved quadtree decomposition algorithms," lEEE Trans. Image Processing, vol. 3, no. 2, pp. 207-215, Mar. 1994. https://doi.org/10.1109/83.277901
  14. A. Signoroni, F. Lazzaroni and R. Leonardi , "Exploitation and extension of the region-of-interest coding functionalities in JPEG2000," IEEE Trans. Consumer Electronics, vol. 49, no. 4, pp. 818-823, 2003. https://doi.org/10.1109/TCE.2003.1261160
  15. P. Strobach, "Tree-structured scene adaptive coder," IEEE Trans. Communications, vol. 38, no. 4, pp. 477-486, Apr. 1990. https://doi.org/10.1109/26.52659
  16. G. Sullivan, and R. Baker, "Efficient quadtree coding of images and video," IEEE Trans. Image Processing, vol. 3, no. 3, pp. 327-331, May 1994. https://doi.org/10.1109/83.287030
  17. P. G. Tahoces, J. R. Varela, M. J. Lado, and M. Souto, "Image compression: Maxshift ROI encoding options in JPEG 2000," Computer Vision and Image Understanding, vol. 109, no. 2, pp. 139-145, 2008. https://doi.org/10.1016/j.cviu.2007.07.001
  18. D. Taubman, and M. W. Marcellin, JPEG 2000 : Image Compression Fundamentals, Standards and Practice, Kluwer Academic Publishers, 2002.
  19. C. Taylor, and S. Dey, "Adaptive image compression for wireless multimedia communication," In Communications, lEEE International Conference on ICC 2001, vol. 6, pp. 1925-1929, 2001.
  20. N. Thomas, N. Boulgouris, and M. Strintzis, "Optimized transmission of JPEG 2000 streams over wireless channels," IEEE Trans. Image Processing, vol. 15, no.1, pp. 54-67, Jan. 2006. https://doi.org/10.1109/TIP.2005.860338
  21. P. Tsang, "Near-computation-free image encoding scheme based on adaptive decimation," IEEE Trans. Image Processing, vol. 2, no. 4, pp. 175-184, Aug. 2008. https://doi.org/10.1049/iet-ipr:20070062
  22. K. H. Tzou, "Progressive image transmission: a review and comparison of techniques," Opt. Eng., vol. 26, no. 7, pp. 581-589, 1987.
  23. Z. Wang, and A. C. Bovik, "Bitplane-by-bitplane shift (bbbshift) - a suggestion for JPEG 2000 region of interest coding," IEEE Signal Processing Letters, no. 9, vol. 5, pp. 139-145, 2002.
  24. L. Wang, and M. Goldberg, "Reduced-difference pyramid: A data structure for progressive image transmission," Opt. Eng., vol. 28, pp, 708-716, Jul. 1989.