DOI QR코드

DOI QR Code

A Retrieval of Vertically-Resolved Asian Dust Concentration from Quartz Channel Measurements of Raman Lidar

라만 라이다의 석영 채널을 이용한 고도별 황사 농도 산출

  • Noh, Young-Min (Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology) ;
  • Lee, Kwon-Ho (Department of Satellite Geoinformatics Engineering, Kyungil University) ;
  • Lee, Han-Lim (Department of Atmospheric Sciences, Yonsei University)
  • Received : 2011.01.20
  • Accepted : 2011.05.11
  • Published : 2011.06.30

Abstract

The Light Detection and Ranging (Lidar) observation provides a specific knowledge of the temporal and vertical distribution and the optical properties of the aerosols. Unlike typical Mie scattering Lidars, which can measure backscattering and depolarization, the Raman Lidar can measure the quartz signal at the ultra violet (360 nm) and the visible (546 nm) wavelengths. In this work, we developed a method for estimating mineral quartz concentration immersed in Asian dust using Raman scattering of quartz (silicon dioxide, silica). During the Asian dust period of March 15, 16, and 21 in 2010, Raman lidar measurements detected the presence of quartz, and successfully showed the vertical profile of the dust concentrations. The satellite observations such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) confirmed spatial distribution of Asian dust. This approach will be useful for characterizing the quartz dominated in the atmospheric aerosols and the investigations of mineral dust. It will be especially applicable for distinguishing the dust and non-dust aerosols in studies on the mixing state of Asian aerosols. Additionally, the presented method combined with satellite observations is enable qualitative and quantitative monitoring for Asian dust.

Keywords

References

  1. Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis (1990) Measurement of atmospheric aerosol extinction profiles with a Raman lidar, Opt. Lett., 15, 746-748. https://doi.org/10.1364/OL.15.000746
  2. Feng, Q., K.N. Endo, and G.D. Cheng (2002) Dust storms in China: A case study of dust storm variation and dust characteristics, Bull. Eng. Geol. Environ., 61, 253-261. https://doi.org/10.1007/s10064-001-0145-y
  3. Ganzei, L.A. and N.G. Razzhigaeva (2006) Composition of sand storm particles in the southern far east, Lithology and Mineral Resources, 41(3), 215-221. https://doi.org/10.1134/S0024490206030023
  4. Huebert, B.J., T. Bates, P.B. Russell, G. Shi, Y.J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima (2003) An overview of ACE-Asia: strategies for quantifying the relationships between Asian aerosols and their climatic impacts, J. Geophys. Res., 108(D23), 8633. https://doi.org/10.1029/2003JD003550
  5. Husar, R.B., D.M. Tratt, B.A. Schichtel, S.R. Falke, F. Li, D. Jaffe, S. Gasso, T. Gill, N.S. Laulainen, F. Lu, M.C. Reheis, Y. Chun, D. Westphal, B.N. Holben, C. Gueymard, I. McKendry, N. Kuring, G.C. Feldman, C. McClain, R.J. Frouin, J. Merrill, D. DuBois, F. Vignola, T. Murayama, S. Nickovic, W.E. Wilson, K. Sassen, N. Sugimoto, and W.C. Malm (2001) Asian dust events of April 1998, J. Geophys. Res., 106, 18,317-18,330. https://doi.org/10.1029/2000JD900788
  6. Ivanov, V.A., M.A. Prokofyev, D.A. Zhukovsky, V.F. Zhvalev, L.S. Ivlev, and J.W. Winchester (1989) Chemical and mineralogical investigation of tropospheric aerosols during the U.S.S.R.-U.S.A. experiment "DUNE", Dushanbe, Tadzhik SSR, Special environmental Report No. 17, WMO-No. 724, World Meteorological Organization, Geneva, pp. 100-103.
  7. Lee, K.H. and Y.J. Kim (2010) Satellite remote sensing of Asian aerosols: a case study of clean, polluted and dust storm days, Atmos. Meas. Tech., 3, 1771-1784, doi:10.5194/amt-3-1771-2010.
  8. Lee, K.H., Z. Li, Y.J. Kim, and A. Kokhanovsky (2009) Aerosol monitoring from satellite observations: a history of three decades, Atmospheric and Biological Environmental Monitoring. Edited by Y.J. Kim, U. Platt, M.B. Gu, and H. Iwahashi, Springer, doi:10.1007/978-1-4020-9674-7_2, 13-38.
  9. Noh, Y.M., Y.J. Kim, B.C. Choi, and T. Murayama (2007) Aerosol lidar ratio characteristics measured by a multi-wavelength Raman Lidar system at Anmyeon Island, Korea, Atmos. Res., doi:10.1016/j.atmosres.2007.03.006.
  10. Noh, Y.M., Y.J. Kim, and D. Muller (2008) Seasonal characteristics of lidar ratio measured with a Raman lidar at Gwangju, Korea in spring and autumn, Atmos. Environ., 42, 2208-2224. https://doi.org/10.1016/j.atmosenv.2007.11.045
  11. Ramanathan, V. and F. Feng (2009) Air pollution, greenhouse gases and climate change: Global and regional perspectives, Atmos. Environ., 43, 37-50. https://doi.org/10.1016/j.atmosenv.2008.09.063
  12. Sakai, T., T. Nagai, M. Nakazato, Y. Mano, and T. Murayama (2003) Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and watervapor mixing ratio over Tsukuba, Appl. Opt., 42(36), 7103-7116. https://doi.org/10.1364/AO.42.007103
  13. Schoen, P.E. and H.Z. Cummins (1971) Absolute cross sections for Raman and Brillouin light scattering in quartz, in Proceedings of Second International Conference on Light Scattering in Solids. Edited by M. Balkanski, p. 460, Flammarion, Paris.
  14. Schwartz, S.E. and M.O. Andreae (2002) Uncertainty in climate change caused by aerosols, Science, 272, 1121-1122.
  15. Sharif, S. (1995) Chemical and mineral composition of dust and its effect on the dielectric constant, IEEE Transactions on Geoscience and Remote Sensing, 33(2), 353-359. https://doi.org/10.1109/36.377935
  16. Shin, D.H., Y.M. Noh, B. Tatarov, S.K. Shin, Y.J. Kim, and D. Muller (2010) Multiwavelength aerosol Raman lidar for optical and microphysical aerosol typing over east Asia, Proceeding of the 25th International Laser Radar conference, St. Petersburg, Russia, 239-242.
  17. Tatarov, B. and N. Sugimoto (2005) Estimation of quartz concentration in the tropospheric mineral aerosols using combined Raman and high-spectral-resolution lidars, Opt. Lett., 30, 3407-3409. https://doi.org/10.1364/OL.30.003407
  18. Uno, I., H. Amano, S. Emori, K. Kinoshita, I. Matsui, and N. Sugimoto (2001) Trans-Pacific yellow sand transport observed in April 1998: A numerical simulation, J. Geophys. Res., 106, 18,331-18,344. https://doi.org/10.1029/2000JD900748

Cited by

  1. Aerosol Direct Radiative Forcing by Three Dimensional Observations from Passive- and Active- Satellite Sensors vol.28, pp.2, 2012, https://doi.org/10.5572/KOSAE.2012.28.2.159
  2. Three Dimensional Monitoring of the Asian Dust by the COMS/GOCI and CALIPSO Satellites Observation Data vol.29, pp.2, 2013, https://doi.org/10.5572/KOSAE.2013.29.2.199
  3. Visibility Estimated from the Multi-wavelength Sunphotometer during the Winter 2011 Intensive Observation Period at Seoul, Korea vol.29, pp.5, 2013, https://doi.org/10.5572/KOSAE.2013.29.5.682
  4. 3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite vol.30, pp.5, 2014, https://doi.org/10.7780/kjrs.2014.30.5.2