DOI QR코드

DOI QR Code

PbTe 열전재료에 형성된 HgTe 나노개제물의 석출거동: 초기 격자 불일치의 형성, 이론적 계산 및 실험적 증명

Precipitation Behaviors of HgTe Nanoinclusions Formed in Thermoelectric PbTe: Initial Induced Lattice Mismatch, Theoretical Calculation and Experimental Verification

  • 김경호 (건국대학교 신기술융합학과) ;
  • 권태형 (건국대학교 신기술융합학과) ;
  • 박수한 (건국대학교 신기술융합학과) ;
  • 안형근 (건국대학교 전기공학과) ;
  • 이만종 (건국대학교 신기술융합학과)
  • Kim, Kyung-Ho (Department of Advanced Technology Fusion, Konkuk University) ;
  • Kwon, Tae-Hyung (Department of Advanced Technology Fusion, Konkuk University) ;
  • Park, Su-Han (Department of Advanced Technology Fusion, Konkuk University) ;
  • Ahn, Hyung-Keun (Department of Electrical Engineering, Konkuk University) ;
  • Lee, Man-Jong (Department of Advanced Technology Fusion, Konkuk University)
  • 투고 : 2011.06.03
  • 심사 : 2011.06.13
  • 발행 : 2011.07.01

초록

A highly strained nanostructure comprising crystallographically aligned HgTe nanoinclusions and a surrounding PbTe matrix has been synthesized using a precipitation process of supersaturated HgTe-PbTe alloys. From the early precipitation stage, HgTe nanoinclusions take disk shape, which is transformed from initial HgTe nuclei, although there is no lattice constant difference of the two end components at standard state. As a primary reason for the morphological transformation of the initial spherical HgTe nuclei to HgTe nanodisks, the induced lattice mismatch is suggested. On the condition that the HgTe nanodisks maintain perfect coherent nature with PbTe matrix, the stress-free lattice constant of constrained HgTe nanodisks has been calculated based on the defined concept of the strain-induced tetragonality, the linear elasticity and the actual measurement in HRTEM images.

키워드

참고문헌

  1. A. G. Khachaturyan and G. A. Shatalov, Sov. Phys. JETP, 29, 557 (1969).
  2. L. J. Walpole, Proc. Roy. Soc., A300, 270 (1967).
  3. R. J. Asaro and D. M. Barnett, J. Mech. Phys. Solids., 23, 77 (1975). https://doi.org/10.1016/0022-5096(75)90012-5
  4. W. C. Johnson, M. B. Berkenpas, and D. B. Laughlin, Acta. Metall., 36, 3149 (1988). https://doi.org/10.1016/0001-6160(88)90051-X
  5. J. K. Lee, D. M. Barnett, and H. I. Aaronson, Metall. Trans., A8, 963 (1977).
  6. A. G. Khachaturyan, S. Semenovskaya and T. Tsakalakos, Phys. Rev., B52, 15909 (1995)
  7. F. Soisson, A. Barbu and G. Martin, Acta. Mater., 44, 3789 (1996). https://doi.org/10.1016/1359-6454(95)00447-5
  8. Y. Wang, D. Banerjee, C. C. Su, and A. G. Khachaturyan, Acta. Mater., 46, 2983 (1998). https://doi.org/10.1016/S1359-6454(98)00015-9
  9. G. Rubin and A. G. Khachaturyan, Acta. Mater., 47, 1995 (1999). https://doi.org/10.1016/S1359-6454(99)00107-X
  10. R. Muller and D. Gross, Comp. Mater. Sci., 16, 53 (1999). https://doi.org/10.1016/S0927-0256(99)00045-2
  11. M. Karlik and B. Jouffrey, Acta. Mater., 45, 3251 (1997). https://doi.org/10.1016/S1359-6454(97)00003-7
  12. L. Lochte, A. Gitt, G. Gottstein, and I. Hurtado, Acta. Mater., 48, 2969 (2000). https://doi.org/10.1016/S1359-6454(00)00073-2
  13. M. J. Lee and C. U. Kim, Nano. Letters., 3, 1607 (2003). https://doi.org/10.1021/nl034636a
  14. M. J. Lee, Metal Mater. Int., 9, 83 (2003). https://doi.org/10.1007/BF03027235
  15. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature, 413, 597 (2001). https://doi.org/10.1038/35098012
  16. B. C. Sales, Mater. Res. Soc. Bull. 23, 15 (1998).
  17. B. Wölfing, C. Kloc, J. Teubner, and E. Bucher, Phys. Rev. Lett., 86, 4350 (2001). https://doi.org/10.1103/PhysRevLett.86.4350
  18. A. I. Boukai, Y. Bunimovich, J. T. Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath, Nature, 451, 168 (2007).
  19. G. Simons, H. Wang, Handbook on single crystal elastic constants and calculated aggregate properties (MIT Press, 1971).
  20. T. Mura, Micromechanics of Defects in Solids, (Martinus Nijhoff, Hague, Netherland, 1987).
  21. A. G. Khachaturyan, Theory of structural transformations in solids (John Wiley & Sons, New York, 1983).