DOI QR코드

DOI QR Code

RF 마그네트론 스퍼트링에 의한 Ga 와 Ge가 도핑된 ZnO 박막 특성의 온도효과

Effects of Substrate Temperature on Properties of (Ga,Ge)-Codoped ZnO Thin Films Prepared by RF Magnetron Sputtering

  • Jung, Il-Hyun (Department of Chemical Engineering, Dankook University)
  • 투고 : 2011.04.18
  • 심사 : 2011.06.14
  • 발행 : 2011.07.01

초록

The ZnO thin films doped with Ga and Ge (GZO:Ge) were prepared on glass substrate using RF sputtering system. Structural, morphological and optical properties of the films deposited in different temperatures were studied. Proportion of the element of using target was 97 wt% ZnO, 2.5 wt% Ga and 0.5 wt% Ge with 99.99% highly purity. Structural properties of the samples deposited in different temperatures with 200 w RF power were investigated by field emission scanning electron microscopy, FE-SEM images and x-ray diffraction XRD analysis. Atomic force microscopy, AFM images were able to show the grain scales and surface roughness of each film rather clearly than SEM images. it was showed that increasing temperature have better surface smoothness by FE-SEM and AFM images. Transmittance study using UV-Vis spectrometer showed that all the samples have highly transparent in visible region (300~800 nm). In addition, it can be able to calculate bandgap energy from absorbance data obtained with transmittance. The hall resistivity, mobility, and optical band gap energy are influenced by the temperature.

키워드

참고문헌

  1. Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, and Z. Zhu, and T. Yao, J. Appl. Phys., 84, 3912 (1988).
  2. Y. R. Cho and I. H. Jung. J. Korean Ind. Eng. Chem., 20, 617 (2009).
  3. I. H. Jung, M. S. Chae, and U. A. Lee, Journal of the Semiconductor & Display Thechnology, 9, 2 (2010).
  4. I. H. Jung and M. S. Chae, Journal of the Semiconductor & Display Thechnology, 9, 3 (2010).
  5. W. J. Cho, S. J. Kang, and Y. S. Yoon, Journal of Semiconductor Technology and Science, 47, 6 (2010).
  6. S. W. Shin, K. U Sim, J. H. Moon, and J. H. Kim, Current Applied Physics, 10, 274 (2010). https://doi.org/10.1016/j.cap.2009.11.060
  7. S. W. Shin, K. U Sim, J. H. Moon, and J. H. Kim, Current Applied Physics, 10, 274 (2010). https://doi.org/10.1016/j.cap.2009.11.060
  8. M. Jiang, Z. Wang, and Z. Ning, Thin Solid Films, 517, 6717 (2009). https://doi.org/10.1016/j.tsf.2009.05.027
  9. I. H. Jung, M. S. Chae, and U. A. Lee, Journal of the Semiconductor & Display Thechnology, 9 (2010).
  10. M. Suchea, S. Christoulakis, T Kitsopoulous, and G Kiriakidis, Thin Solid Filims, 515, 6562 (2007). https://doi.org/10.1016/j.tsf.2006.11.151
  11. R. E. Marotti, P. Giorgi, G. Mauchado, and E. A. Dalchiele, Sol. En. Mat. Sol. Cells, 90, 2356 (2006). https://doi.org/10.1016/j.solmat.2006.03.008
  12. H. Phe, F. Zhuge, Z. Z. Ye, L. P. Zhu, F. Z. Wang, B. H. Zhao, and J. Y. Huang, J. Appl. Phys., 99, 023503 (2006). https://doi.org/10.1063/1.2161419
  13. S. S. Lin and J. L. Huang, Surf. Coat. Technol., 185, 222 (2004). https://doi.org/10.1016/j.surfcoat.2003.11.014
  14. O. Kluth, G. Schope, J. Hupkes, C. Agashe, J. Muller, and B. Rech, Thin Solid Films, 442, 80 (2003). https://doi.org/10.1016/S0040-6090(03)00949-0