DOI QR코드

DOI QR Code

Effect of Thickness on the Properties of Al Doped ZnO Thin Films Deposited by Using PLD

Al이 도핑된 ZnO 소재의 PLD 박막 두께 변화가 특성에 미치는 영향

  • Pin, Min-Wook (Department of Nano Engineering and Electronics Ceramics Center, Dong-Eui University) ;
  • Bae, Ki-Ryeol (Department of Nano Engineering and Electronics Ceramics Center, Dong-Eui University) ;
  • Park, Mi-Seon (Department of Nano Engineering and Electronics Ceramics Center, Dong-Eui University) ;
  • Lee, Won-Jae (Department of Nano Engineering and Electronics Ceramics Center, Dong-Eui University)
  • 빈민욱 (동의대학교 나노공학과, 전자세라믹스센터) ;
  • 배기열 (동의대학교 나노공학과, 전자세라믹스센터) ;
  • 박미선 (동의대학교 나노공학과, 전자세라믹스센터) ;
  • 이원재 (동의대학교 나노공학과, 전자세라믹스센터)
  • Received : 2011.01.24
  • Accepted : 2011.05.31
  • Published : 2011.07.01

Abstract

AZO (Al doped ZnO) thin films were deposited on the quartz substrates with thickness variation from 25 to 300 nm by using PLD (pulsed laser deposition). XRD (x-ray diffractometer), SPM (scanning probe microscopy), Hall effect measurement and uv-visible spectrophotometer were employed to investigate the structural, morphological, electrical and optical properties of the thin films. XRD results demonstrated that films were preferrentially oriented along the c-axis and crystallinity of film was improved with increase of film thickness. As for the surface morphologies, the mean diameter and root mean square of grains were increased as the film thickness was increased. When the film thickness was 200 nm, the lowest resistivity of $4.25{\times}10^{-4}\;{\Omega}cm$ obtained with carrier concentration of $6.84{\times}10^{20}\;cm^{-3}$ and mobility of $21.4\;cm^2/V{\cdot}S$. All samples showed more than 80% of transmittance in the visible range. Upon these results, it is found that the samples thickness can affect their structural, morphological, optical and electrical properties. This study suggests that the resistivity can be improved by controlling film thickness.

Keywords

References

  1. B. Y. Oh, M. C. Jeong, T. H. Moon, W. Lee, J. M. Myoung, J. Y. Hwang, and D. S. Seo, J. Appl. Phys., 99, 124505 (2006). https://doi.org/10.1063/1.2206417
  2. M. Berginski, J. Hȕpkes, W.Reetz, B. Rech, and M. Wuttig, Thin Solid Films, 516, 5836 (2008). https://doi.org/10.1016/j.tsf.2007.10.029
  3. X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, Appl. Phys. Lett., 83, 1875 (2003). https://doi.org/10.1063/1.1605805
  4. D. Xu, Z. Deng, Y. Xu, J. Xiao, C. Liang, Z. Pei, and C. Sun, Phys. Lett., A346, 148 (2005).
  5. S. Fay, U. Kroll, C. Bucher, E. V. Sauvain, and A. Shah, Sol. Energ. Mat. Sol. C., 86, 385 (2005). https://doi.org/10.1016/j.solmat.2004.08.002
  6. H. Kim, J. S. Horwitz, W. H. Kim, A. J. Mȁkinen, Z. H. Kafafi, and D. B. Chrisey, Thin Solid Films, 420, 539 (2002). https://doi.org/10.1016/S0040-6090(02)00836-2
  7. J. Nomoto, M. Konagai, K. Okada, T. Ito, T. Miyata, and T. Minami, Thin Solid Films, 518, 2937 (2010). https://doi.org/10.1016/j.tsf.2009.10.134
  8. T. Minami, T. Yamamoto, Y. Toda, and T. Miyata, Thin Solid Films, 373, 189 (2000). https://doi.org/10.1016/S0040-6090(00)01132-9
  9. A. I. Ali, C. H. Kim, J. H. Cho, and Bog. G. Kim, J. Korean Phys. Soc., 49, 652 (2006).
  10. D. R. Sahu, S. Y. Lin, and J. L. Huang, J. Microelectron., 38, 245 (2007). https://doi.org/10.1016/j.mejo.2006.11.005
  11. J. W. Kim, D. K. Lee, and H. B. Kim, J. KIEEME 24, 177 (2011).
  12. Y. Liu and J. Lian, Appl. Surf. Sci., 253, 3727 (2007). https://doi.org/10.1016/j.apsusc.2006.08.012
  13. P. Banerjee, W. J. Lee, K. R. Bae, S. B. Lee, and G. W. Rubloff, J. Appl. Phys., 108, 43504 (2010). https://doi.org/10.1063/1.3466987
  14. A. F. Aktaruzzaman, G. L. Sharma, and L. K. Malhotra, Thin Solid Films, 198, 67 (1991). https://doi.org/10.1016/0040-6090(91)90325-R
  15. H. M. Zhou, D. Q. Yi, Z. M. Yu, L. R. Xiao, and J. Li, Thin Solid Films, 515, 6909 (2007). https://doi.org/10.1016/j.tsf.2007.01.041
  16. A. Martin, J. P. Espinos, A. Justo, J. P. Holgado, F. Yubero, and A. R. Gonzalez-Elipe, Surf. Coat. Technol., 151, 289 (2002). https://doi.org/10.1016/S0257-8972(01)01609-7
  17. H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrysey, Thin Solid Films, 377, 798 (2000). https://doi.org/10.1016/S0040-6090(00)01290-6
  18. B. Z. Dong, G. J. Fang, J. F. Wang, W. J. Guan, and X. Z. Zhao, J. Appl. Phys., 101, 033713 (2007). https://doi.org/10.1063/1.2437572
  19. A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, Thin Solid Films, 517, 1478 (2008). https://doi.org/10.1016/j.tsf.2008.09.024
  20. S. Hayamizu, H. Tabata, H. Tanaka and T. Kawai, J. Appl. Phys 80, 787 (1996). https://doi.org/10.1063/1.362887
  21. H. W. Liang, Y. M. Lu, D. Z. Shen, J. F. Yan, B. H. Li, J. Y. Zhang, Y. C. Liu, and X. W. Fan, J. Cryst. Growth, 278, 305 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.024
  22. S. S. Lin and J. L. Huang, Ceram. Int., 30, 497 (2004). https://doi.org/10.1016/j.ceramint.2003.08.002
  23. B. S. Kim, E. K. Kim, H. I. Kang, K. I. Lee, T. Y. Lee, and J. T. Song, J. Korean Vac. Soc., 16, 105 (2007). https://doi.org/10.5757/JKVS.2007.16.2.105
  24. B. K. Shin, T. I. Lee, K. I. Park, K. J. Ahn, and J. M. Myoung, J. Kor. Mater. Res., 20, 47 (2010). https://doi.org/10.3740/MRSK.2010.20.1.047
  25. S. H. Cho, J. KIEEME, 20, 932 (2007).
  26. J. Y. Jung and S. H. Cho, J. KIEEME, 23, 280 (2010).
  27. B. E. Semelius, K. F. Berggrea, Z. C. Jin, I. Hamberg, and C. G. Granqvist, Phys. Rev., B37, 10244 (1988).