DOI QR코드

DOI QR Code

Dielectric and Mechanical Properties of BNT-LCP Composites

  • Park, Myoung-Sung (Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong-Ho (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Byung-Ik (Korea Institute of Ceramic Engineering and Technology) ;
  • Chun, Myoung-Pyo (Korea Institute of Ceramic Engineering and Technology) ;
  • Nahm, Sahn (Department of Materials Science and Engineering, Korea University)
  • Received : 2010.08.20
  • Accepted : 2011.06.16
  • Published : 2011.07.01

Abstract

We investigated the dielectric and mechanical properties of ceramic polymer composite xBNT - (1-x)LCP (x= 0, 10, 20, 30, 40 vol.%). The disk shaped BNT ($BaNd_2Ti_4O_{12}$) - LCP (liquid crystal polymer) composite samples were prepared by compression molding method. With increasing the BNT content in composites from 10 to 40 vol.%, the dielectric constant increased but the dielectric loss as well as bending strength of composites reduced. These composites were well described with modified Lichtenecker's model having k = 0.392 and 0.303 for the first and second ball milled BNT filled composites, which means that the BNT filler in composites are well dispersed. The dielectric constant of the composite comprised of the second milled BNT ($D_{50}$ = 1.39 um) was higher that of the composite of the first milled BNT ($D_{50}$= 2.45 um), which seems to be related with the different particle size and dispersion of BNT fillers in LCP matrix. The bending strength of the composite containing the second milled BNT was superior to that of the composite of the first milled BNT.

Keywords

References

  1. C. J. Dias and D. K. Das-Gupta, IEEE Trans. Dielectr. Electr. Insul., 3, 706 (1996). https://doi.org/10.1109/94.544188
  2. E. Reichmanis, H. Katz, C. Kloc, and A. Maliakal, Bell Labs Tech. J., 10, 87 (2005). https://doi.org/10.1002/bltj.20106
  3. Y. Rao, J. Yue, and C. P. Wong, In IEEE Conference Proceedings of Electronic Components (Technolog., 2001) p. 1408.
  4. D. H. Kuo, C. C. Chang, T. Y. Su, W. K. Wang, and B. Y. Lin, Mater. Chem. Phys., 85, 201 (2004). https://doi.org/10.1016/j.matchemphys.2004.01.003
  5. S. D. Cho, K. W. Jan, J. G. Hyun, S. Lee, K. W. Paik H. Kim, and J. H. Kim, IEEE Trans. Dielectr. Electr. Pack. Manuf., 28, 297 (2005). https://doi.org/10.1109/TEPM.2005.856535
  6. Y. Rao, A. Takahashi, and C. P Wong, Composites Part, A34, 1113 (2003).
  7. L. Ramajo, M. Reboredo, and M. Castro, Compos. Pt., A36, 1267 (2005).
  8. S. H. Xie, X. Z. Wei, Z. K. Xu, and Y. Y. Xu, Compos. Pt., A36, 1152 (2005). https://doi.org/10.1016/j.compositesa.2004.12.010
  9. C. Muralidhar and P. K. C. Pillai, J. Mater. Sci., 23, 410 (1988). https://doi.org/10.1007/BF01174664
  10. C. Muralidhar and P. K. C. Pillai, J. Mater. Sci. Lett., 6, 1243 (1987). https://doi.org/10.1007/BF01794576
  11. A. Shimojima, N. Umeda, and K. Kuroda, Chem. Mater., 13, 3610 (2001). https://doi.org/10.1021/cm0101125
  12. Z. Wang and T. J. Pinnavaia, Chem. Mater., 10, 1820 (1998). https://doi.org/10.1021/cm970784o
  13. T. Hanemann, J. Boehm, P. Henzi, K. Honnef, K. Litfin, E. Ritzhaupt-Kleissl, and J. Hausselt, IEE Proc. Nanobiotechnol., 151, 167 (2004). https://doi.org/10.1049/ip-nbt:20040518
  14. C. J. Dias, R. Igreja, R. Marat-Mendes, P. In'acio, J. N. Marat-Mendes, and D. K. Das-Gupta, IEEE Trans. Dielectr. Electr. Insul., 11, 35 (2004). https://doi.org/10.1109/TDEI.2004.1266314
  15. V. S. Nisa, S. Rajesh, K. P. Murali, V. Priyadarsini, S. N. Potty, and R. Ratheesh, Compos. Sci. Technol., 68, 106 (2008). https://doi.org/10.1016/j.compscitech.2007.05.024
  16. T. Negas, G. Yeager, S. Belland, R. Amren, P. K. Davies, and R. S. Roth, Chemistry of Electronic Ceramic Materials (National Institute of Standards and Technology, Gaithersburg, Md, USA, 1991) p. 21.
  17. X. Kuang, F. Liao, S. Tian, and X. Jing, Mater. Res. Bull., 37, 1755 (2002). https://doi.org/10.1016/S0025-5408(02)00856-5
  18. E. A. Nenasheva and N. F. Kartenko, J. Eur. Ceram. Soc., 21, 2697 (2001). https://doi.org/10.1016/S0955-2219(01)00348-X
  19. M. G. Todd and F. G. Shi, Microelectron. J., 33, 627 (2002). https://doi.org/10.1016/S0026-2692(02)00038-1
  20. Y. Rao, C. P. Wong, and J. M. Qu, IEEE Trans. Adv. Packag., 44 (2000).
  21. A. V. Goncharenko, V. Z. Lozovski, and E. F. Venger, Opt. Commun., 174, 1932 (2000).
  22. S. Ogitani, S. A. Bidstrup-Allen, and P. A. Kohl, IEEE Trans. Adv. Packag., 23, 313 (2000). https://doi.org/10.1109/6040.846650