T2 Relaxation Times of the Cingulate Cortex, Amygdaloid Body, Hippocampal Body, and Insular Cortex: Comparison of 1.5 T and 3.0 T

대상회 피질, 편도체, 해마체, 도피질의 T2 이완시간: 1.5테슬러와 3.0테슬러 자기공명영상장치의 비교

  • Lee, Ho-Joon (Department of Radiology, Research Institute of Radiologic Science, Yonsei University College of Medicine) ;
  • Kim, Eung-Yeop (Department of Radiology, Research Institute of Radiologic Science, Yonsei University College of Medicine)
  • 이호준 (연세대학교 의과대학 영상의학과) ;
  • 김응엽 (연세대학교 의과대학 영상의학과)
  • Received : 2011.01.19
  • Accepted : 2011.03.07
  • Published : 2011.04.30

Abstract

Purpose : To compare T2 relaxation times (T2) in the cingulate cortex, amygdaloid body, hippocampal body, and insular cortex between 1.5T and 3.0T MR imagers. Materials and Methods : Twelve healthy volunteers underwent FLAIR and CPMG imaging perpendicular to the hippocampal body at both 3.0T and 1.5T. T2 was measured in the cingulate cortex, amygdaloid body, hippocampal body, and insular cortex. The T2 relaxation time ratios of the cingulate cortex, insular cortex, and amygdaloid body to the hippocampal body were compared between 1.5T and 3.0T. Results : The mean T2 of the cingulate cortex, amygdaloid body, hippocampal body, and insular cortex at 1.5T were $109.5{\pm}3.1$, $117.0{\pm}7.1$, $114.7{\pm}2.4$, and $111.3{\pm}2.4$, respectively; $99.7{\pm}3.8$, $100.7{\pm}4.3$, $97.9{\pm}3.4$, and $96.2{\pm}2.0$, respectively, at 3.0T. Percentage changes of T2 in the cingulate cortex, insular cortex, amygdaloid body, and hippocampal body at 3.0T with respect to those at 1.5T were -8.9%, -13.5%, -14.6%, and -13.5%, respectively. The mean T2 ratios of the cingulate gyrus, insular cortex, and amygdaloid body to the hippocampal body at 1.5T and 3.0T were 0.96 and 1.02 (p = 0.003); 1.02 and 1.03 (p>0.05); 0.97 and 0.98 (p>0.05), respectively. Conclusion : T2 decrease in the cingulate cortex was less than the amygdaloid body, insular cortex, and hippocampal body at 3.0T. The mean T2 ratio of the cingulate gyrus to the hippocampal body was significantly different between 1.5T and 3.0T.

목적 : 1.5T와 3.0T MRI에서 대상회 피질, 편도체, 해마체, 도피질의 T2 이완시간 (T2)을 비교하고자 하였다. 대상 및 방법 : 건강한 12명의 자원자를 대상으로 1.5T와 3.0T에서 해마에 대해 수직으로 FLAIR와 CPMG 펄스열 영상을 같은 조건으로 획득하였다. 대상회 피질, 편도체, 해마체, 도피질에서 T2를 측정하였고, 해마와 나머지 부위의 T2 비를 1.5T와 3.0T 사이에서 비교하였다. 결과 : 1.5T에서 측정한 평균 T2는 대상회 피질, 편도체, 해마체, 도피질에서 각각 $109.5{\pm}3.1$, $117.0{\pm}7.1$, $114.7{\pm}2.4$, $111.3{\pm}2.4$, 3.0T에서 측정한 값은 각각 $99.7{\pm}3.8$, $100.7{\pm}4.3$, $97.9{\pm}3.4$, $96.2{\pm}2.0$ 이었다. 1.5T와 3.0T 사이의 T2 변화 백분율은 각각 -8.9%, -13.5%, -14.6%, -13.5% 이었다. 1.5T와 3.0T 사이에서 해마체에 대한 대상회 피질, 편도체, 도피질의 T2 비는 각각 0.96 과 1.02 (p=0.003), 1.02 과 1.03 (p > 0.05), 0.97 과 0.98 (p > 0.05) 이었다. 결론 : 3.0T에서 대상회 피질의 T2 감소는 편도체, 도피질, 해마체와 비교해서 상대적으로 적었고, 대상회 피질과 해마체의 T2 이완시간비는 1.5T와 3.0T에서 의미 있는 차이를 보였다.

Keywords

References

  1. Frayne R, Goodyear BG, Diekhoff P, Lauzon ML, Sevick RJ. Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Investigative radiology 2003;38(7):385-402
  2. Trattnig S, Ba-Ssalamah A, Noebauer-Huhmann IM, et al. MR contrast agent at high-field MRI (3 Tesla). Top Magn Reson Imaging 2003;14(5):365-375 https://doi.org/10.1097/00002142-200310000-00003
  3. Lu H, Nagae-Poetscher LM, Golay X, Lin D, Pomper M, van Zijl PC. Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 2005;22(1):13-22 https://doi.org/10.1002/jmri.20356
  4. Hirai T, Korogi Y, Yoshizumi K, Shigematsu Y, Sugahara T, Takahashi M. Limbic lobe of the human brain: evaluation with turbo fluid-attenuated inversion-recovery MR imaging. Radiology 2000;215(2):470-475 https://doi.org/10.1148/radiology.215.2.r00ma06470
  5. Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DK, Paty DW. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997;37(1):34-43 https://doi.org/10.1002/mrm.1910370107
  6. Schwerdtfeger WK. Structure and fiber connections of the hippocampus. A comparative study. Adv Anat Embryol Cell Biol 1984;83:1-74
  7. Duvcrnoy HM, Delon S, Vannson JL. Cortical blood vessels of the human brain. Brain Res Bull 1981;7(5):519-79 https://doi.org/10.1016/0361-9230(81)90007-1
  8. Vymazal J, Brooks RA, Baumgarner C, et al. The relation between brain iron and NMR relaxation times: an in vitro study. Magn Reson Med 1996;35(1):56-61 https://doi.org/10.1002/mrm.1910350108
  9. Michaeli S, Garwood M, Zhu XH, et al. Proton T2 relaxation study of water, N-acetylaspartate, and creatine in human brain using Hahn and Carr-Purcell spin echoes at 4T and 7T. Magn Reson Med 2002;47(4):629-633 https://doi.org/10.1002/mrm.10135
  10. Hirai T, Korogi Y, Sakamoto Y, Hamatake S, Ikushima I, Takahashi M. T2 shortening in the motor cortex: effect of aging and cerebrovascular diseases. Radiology 1996;199(3):799-803 https://doi.org/10.1148/radiology.199.3.8638008
  11. Georgiades CS, Itoh R, Golay X, van Zijl PC, MeIhem ER. MR imaging of the human brain at 1.5 T: regional variations in transverse relaxation rates in the cerebral cortex. AJNR Am J Neuroradiol 2001 ;22(9): 1732-1737
  12. Briellmann RS, Syngeniotis A, Jackson GD. Comparison of hippocampal volumetry at 1.5 tesla and at 3 tesla. Epilepsia 2001;42(8): 1021-1024 https://doi.org/10.1046/j.1528-1157.2001.0420081021.x
  13. Briellmann RS, Syngeniotis A, Fleming S, Kalnins RM, Abbott DF, Jackson GD. Increased anterior temporal lobe T2 times in cases of hippocampal sclerosis: a multi-echo T2 relaxometry study at 3 T. AJNR Am J Neuroradiol 2004;25(3):389-394
  14. Pell GS, Briellmann RS, Waites AB, Abbott DF, Jackson GD. Voxel-based relaxometry: a new approach for analysis of T2 relaxometry changes in epilepsy. Neuroimage 2004;21(2):707-713 https://doi.org/10.1016/j.neuroimage.2003.09.059