DOI QR코드

DOI QR Code

Underwater Channel Analysis and Transmission Method Research via Coded OFDM

수중채널 분석과 Coded OFDM을 통한 전송방법 연구

  • 전형원 (광주과학기술원 정보통신공학부) ;
  • 이수제 (광주과학기술원 정보통신공학부) ;
  • 이흥노 (광주과학기술원 정보통신공학부)
  • Received : 2011.01.31
  • Accepted : 2011.04.02
  • Published : 2011.05.31

Abstract

The underwater channel is known to offer poor communications channel. The channel medium is highly absorptive and the transmission bandwidth is limited. In addition, the channel is highly frequency selective; the degree of selectiveness depends on a detailed geometry of the channel. Furthermore, the response changes over time as the channel conditions affecting the response such as water temperature, sea surface wind and salinity are time-varying. The transceiver design to deal with the frequency and time selective channel, therefore, becomes very challenging. It has been known that deep fading at certain specific sub-carriers are detrimental to OFDM systems. To mitigate this negative effect, the proposed coded OFDM system employs an LDPC code based modulation. In this paper, we aim 1) to provide a detailed underwater channel model; 2) to design a robust LDPC coded OFDM system; 3) to test the proposed system under a variety of channel conditions enabled by the channel model.

수중채널은 매질에 의한 신호 감쇄로 인해 전송대역이 제한되며, 수온, 염도, 기하학적 구조 등 다양한 요소의 영향을 받기 때문에 복잡하며 신뢰성을 유지하기 어려운 통신 환경 중의 하나이다. 본 논문에서는 수중채널에 대한 분석을 토대로 보다 실질적인 모의 수중채널을 모델링하였다. 또한 ISI, 주파수 선택적 페이딩, 시간 선택적 페이딩을 동시에 고려한 Coded Orthogonal Frequency Division Multiplexing (OFDM) 시스템을 디자인하였으며 앞서 언급한 실질적인 표의 수중채널에 대한 시뮬레이션을 통하여 디자인된 시스템이 다양한 상태의 채널에서도 성능변화의 폭이 작고 견실하게 작동할 수 있음을 보였다. 제안하는 Coded OFDM 시스템은 Low Density Parity Check (LDPC) 코드를 사용했으며, Un-coded OFDM 시스템에 비해 $10^{-3}$ BER기점을 기준으로 7 dB의 이득이 발생하였다. 뿐만 아니라 채널의 변화에 따른 SNR 차가 8 dB에서 3 dB로 줄였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater acoustic sensor networks: research challenges," Ad Hoc Networks Journal, Elsevier, Vol.3, Issue3, pp.257-279, Mar. 2005. https://doi.org/10.1016/j.adhoc.2005.01.004
  2. I. F. Akyildiz, D. Pompili, and T. Melodia, "Challenges for efficient communication in underwater acoustic sensor networks," ACM SIGBED Rev., vol. 1, no. 2, pp. 3-8, Jul. 2004. https://doi.org/10.1145/1121776.1121779
  3. M. Stojanovic and J. Preisig, "Underwater acoustic communication channels: Propagation models and statistical characterization," IEEE Communications Magazine, Vol.47, No.1, pp. 84-89, Jan. 2009.
  4. L. Litwin and M. Pugel, "The Principles of OFDM," RF Signal Processing, pp. 30-48, Jan. 2001.
  5. J. Huang, S. Zhou, and P. Willett, "Nonbinary LDPC coding for multicarrier underwater acoustic communication," IEEE JSAC Special Issue on Underwater Wireless Communications and Networks, Vol.26, No.9, pp.1684-1696, Dec. 2008.
  6. O. Edfors, M. Sandell, J. van de Beek, D. Landstrom, and F. Sjoberg, An introduction to orthogonal frequency-division multiplexing, Technical report, Lulea University of Technology, Sep. 1996.
  7. S. Mason, C. Berger, S. Zhou, K. Ball, L. Freitag, and P. Willett, "An OFDM design for underwater acoustic channels with Doppler spread," in Proc. of the 13th DSP Workshop, Marco Island, FL, January 4-7, 2009.
  8. M. Stojanovic, "OFDM for underwater acoustic communications: Adaptive synchronization and sparse channel estimation," in Proc. of International Conference on Acoustics, Speech and Signal Proc., Las Vegas, NV, Apr. 2008.
  9. M. Stojanovic, "Low complexity OFDM detector for underwater channels," in Proc. of MTS/IEEE OCEANS conference, Boston, MA, Sept. 18-21, 2006.
  10. Li-yang Bai, Fang Xu, Ru Xu, Shao-yu Zheng, "LDPC Application Based on CI/OFDM Underwater Acoustic Communication System," icise, pp.2641-2644, 2009 First International Conference on Information Science and Engineering, 2009.
  11. M. Stojanovic, "Underwater Acoustic Communication," entry in Encyclopedia of Electrical and Electronics Engineering, John G. Webster, Ed., John Wiley & Sons, 1999, Vol. 22, pp.688-698.
  12. P. Qarabaqi and M. Stojanovic, "Statistical modeling of a Shallow Water Acoustic Communication Channel," in Proc. Underwater Acoustic Measurements Conference, Nafplion, Greece, Jun. 2009.
  13. L. Berkhovskikh and Y. Lysanov, Fundamentals of Ocean Acoustics, Springer, 1982.
  14. B. Sklar, Digital Communications: Fundamentals and Applications, 2nd Ed., Prentice Hall, 2001.
  15. R. G. Gallager, "Low density parity check codes," IRE Trans. Inform. Theory, Vol. IT-8, pp.21-28, Jan. 1962.
  16. S. ten Brink, G. Kramer, and A. Ashikhmin, "Design of Low-Density Parity-Check Codes for Modulation and Detection," IEEE Trans. Commun., Vol.52, pp.670-678, Apr. 2004. https://doi.org/10.1109/TCOMM.2004.826370
  17. H. N. Lee, Wireless Communications Class lecture notes, GIST, spring semester, 2010.