DOI QR코드

DOI QR Code

The Efficient Detection Algorithm of Various CR signals using Channel Bonding in TV White Space

TV White Space에서 채널 본딩된 다양한 CR 시스템의 효율적인 검출 알고리즘

  • 임선민 (한국전자통신연구원 방송통신융합부문 인지무선연구팀) ;
  • 정회윤 (한국전자통신연구원 방송통신융합부문 인지무선연구팀) ;
  • 정병장 (한국전자통신연구원 방송통신융합부문 인지무선연구팀)
  • Received : 2010.11.04
  • Accepted : 2011.04.20
  • Published : 2011.05.31

Abstract

For efficient utilization of spectrum resources in TV white space after DTV transition, FCC allowed usage of the spectrum for CR system. The CR system is required to cognize channel usage state for utilizing the unused spectrum in TV white space which coexists various primary and secondary systems. In the meantime, as a demand for high throughput communication had been increased recently, CR systems also consider to adopt channel bonding technology, thus spectrum sensing for channel bonded system is essentially required. In this paper, we propose a novel spectrum sensing algorithm for channel bonding system using a single channel receiver. For IEEE 802.l1af signal, the proposed algorithm provide detection probability of 90% with false alarm probability 10% at SNR -18dB for single channel system and at SNR -7dB for 8 channel bonded system, respectively. Utilizing the proposed scheme, we can detect channel bonded signal using only a single receiver, therefore system overhead for spectrum sensing can be reduced significantly.

FCC는 디지털 방송 전환 후 발생되는 TVWS에서의 효율적인 스펙트럼 활용을 위해 비면허 시스템의 주파수 사용을 허용하였다. 다양한 면허 사용자 및 비면허 CR 사용자가 공존하는 환경에서 최적 채널 선택을 위해서는 우선 채널 사용 현황 파악이 요구된다. 데이터베이스를 통해 제공되는 면허 사용자 채널 정보 외에는 센싱 알고리즘을 통한 검출이 필요한데 본 논문에서는 단일 채널 수신만으로 채널 본딩된 비면허 CR 신호까지 검출할 수 있는 알고리즘을 제안하였다. 전산 모의 실험 결과 IEEE 802.11af 신호는 단일 채널의 경우에는 SNR=-18dB, 8 채널 본딩 신호의 경우에는 SNR=-7dB에서 검출 확률이 90% 이상으로 나타났으며, 동일 조건에서 ECMA 392 신호는 단일 채널의 경우에는 SNR=-14dB, 8 채널 본딩 신호의 경우에는 SNR=-6dB로 나타났다. 결과적으로 제안 알고리즘을 통해 단일 채널 수신만으로 채널 본딩 신호의 검출이 가능해짐으로써 전채널 센싱 소요 시간의 감소 및 시스템 오버헤드를 줄일 수 있을 것으로 기대된다.

Keywords

References

  1. FCC, ET Docket No. 08-260, "Second Report and Order and Memorandum Opinion and Order," Nov. 2008.
  2. FCC, ET Docket No.10-174, "Second Memorandum Opinion and Order," Sep. 2010.
  3. Stephen J. Shellhammer, Ahmed K. Sadek and Wenyi Zhang, Technical Challenges for Cognitive Radio in the TV White Space Spectrum
  4. Stephen J. Shellhammer, A comparison of geo-location and spectrum sensing in cognitive radio, ICCCN, Aug. 2010
  5. Hou-Shin Chen, Wen Gao, Daut. D. G., "Spectrum Sensing for OFDM Systems Employing Pilot Tones and Application to DVB-T OFDM," IEEE International Conference on Communications ICC'08, May. 2008, pp.3421-3426.
  6. Cong Wang, Xianbin Wang, Hao Li, Paul Ho, "Multi-window spectrum sensing of unsynchronized OFDM signal at very low SNR," Globecom'09, Dec. 2009
  7. X. Wang, H.W. Chen, Y. Wu, J. Chouinard, and C.L. Wang, "Identification of PCP-OFDM Signals at Very Low SNR for Spectrum Efficient Communications,"in Proc. IEEE Vehicular Technology Conference VTC'09 Spring, April 2009,
  8. F. Socheleau, P. Ciblat, and S. Houcke, "OFDM System Identification for Cognitive Radio Based on Pilot-Induced Cyclostationarity," in Proc. IEEE Wireless Communications and Networking Conference WCNC'09, April 2009,
  9. William A. Gardner, Statistical spectral analysis a nonprobabilistic theory , Prentice hall, 1988
  10. Ning Han, Sung Hwan Sohn, Jae Moung Kim, "Cyclic autocorrelation based blind OFDM detection and identification for cognitive radio," Journal of Communication and Computer, Vol. 6, No.5, May 2009
  11. Minseok Kim, Po Kimtho, Jun-ichi Takada,"Performance Enhancement of Cyclostationarity Detector by Utilizing Multiple Cyclic Frequencies of OFDM signals," IEEE DySPAN 2010
  12. ECMA Std. 392, "MAC and PHY for Operation in TV White Space", Dec. 2009.
  13. IEEE P802.11af/D1.0, "Draft Standard for Information Technology, Telecommunications and information exchange between systems, Local and metropolitan area networks Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications", Jan. 2011.