DOI QR코드

DOI QR Code

Two-step Scheduling With Reduced Feedback Overhead in Multiuser Relay Systems

다중 사용자 릴레이 시스템에서 감소된 피드백 정보를 이용한 두 단계 스케줄링 기법

  • Received : 2011.01.31
  • Accepted : 2011.05.02
  • Published : 2011.05.31

Abstract

In this paper, we introduce a multiuser (MU) scheduling method for multiuser amplify-and-forward relay systems, which selects both the transmission mode, i.e., either one- or two-hop transmission, and the desired user via two steps. A closed-form expression for the average achievable rate of the proposed scheduling is derived under two transmission modes with MU scheduling, and its asymptotic solution is also analyzed in the limit of large number of mobile stations. Based on the analysis, we perform our two-step scheduling algorithm: the transmission mode selection followed by the user selection that needs partial feedback for instantaneous signal-to-noise ratios (SNRs) to the base station. We also analyze the average SNR condition such that the MU diversity gain is fully exploited. In addition, it is examined how to further reduce a quantity of feedback under certain conditions. The proposed algorithm shows the comparable achievable rate to that of the optimal one using full feedback information, while its required feedback overhead is reduced below half of the optimal one.

본 논문은 다중 사용자 amplify-and-forward relay 시스템에서 전송 모드, 즉, 한 홉 혹은 두 홉 전송, 그리고 적절한 사용자를 두 단계로 선택하는 다중 사용자 스케줄링 기법을 소개한다. 제안하는 다중 사용자 스케줄링을 수행하였을 경우 두 가지 전송 모드별 평균 achievable rate의 닫힘 꼴 표현을 유도하고 단말 수가 무한히 증가할 때 평균 achievable rate에 대한 점근적인 결과도 분석한다. 평균 achievable rate 분석에 기반하여 두 단계 스케줄링 알고리즘을 수행하는데, 먼저 전송 모드 선택을 하고, 그 다음 선택된 전송 모드에 대한 순간 signal-to-noise ratio (SNR)을 기지국으로 피드백 함으로써 이를 이용한 부분적인 피드백 정보를 기반으로 사용자 선택을 수행한다. 또한 다중 사용자 diversity gain이 최대로 취득되는 평균 SNR 조건도 분석하고 추가로 특정 조건에서 피드백 양을 더 줄일 수 있는 방안에 대해 조사한다. 제안된 스케줄링 알고리즘은 모든 전송 모드 (즉, 한홉과 두 홉 전송 모드)에 대한 instantaneous SNR을 피드백하여 최적 다중 다용자 스케줄링을 할 경우와 유사한 achievable rate을 보인다. 반면 제안 기법의 피드백 양은 최적 기법에 비해 대략 절반으로 줄어드는 것을 확인한다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. R. Pabst, B. H. Walke, D. C. Schultz, P. Herhold, H. Yanikomeroglu, S. Mukherjee, H. Viswanathan, M. Lott, W. Zirwas, M. Dohler, H. Aghvami, D. D. Falconer, and G. P. Fettweis, "Relay-based deployment concepts for wireless and mobile broadband radio," IEEE Trans. Wireless Commun., Vol.42, pp.80-89, Sep. 2004.
  2. J. N. Laneman, D. N. C. Tse, and G. W. Wornell, "Cooperative diversity in wireless networks: Efficient protocols and outage behavior," IEEE Trans. Inf. Theory, Vol.50, pp.3062-3080, Dec. 2004. https://doi.org/10.1109/TIT.2004.838089
  3. P. A. Anghel and M. Kaveh, "On the performance of distributed space-time coding systems with one and two non-regenerative relays," IEEE Trans. Wireless Commun., Vol.5, pp.682-692, Mar. 2006.
  4. Y. Jing and B. Hassibi, "Distributed space-time coding in wireless relay networks," IEEE Trans. Wireless Commun., Vol.5, pp.3524-3536, Dec. 2006. https://doi.org/10.1109/TWC.2006.256975
  5. Y. Zhao, R. Adve, and T. J. Lim, "Improving amplify-and-forward relay networks: Optimal power allocation versus selection," IEEE Trans. Wireless Commun., Vol.6, pp.3114-3123, Aug. 2007.
  6. B. Rankov and A. Wittneben, "Spectral efficient protocols for half-duplex fading relay channels," IEEE J. Select. Areas Commun., Vol.25, pp.379-389, Feb. 2007. https://doi.org/10.1109/JSAC.2007.070213
  7. R. Knopp and P. Humblet, "Information capacity and power control in single cell multiuser communications," in Proc. IEEE Int. Conf. Commun. (ICC), Seattle, WA, Jun. 1995, pp.331-335.
  8. P. Viswanath, D. N. C. Tse, and R. Laroia, "Opportunistic beamforming using dumb antennas," IEEE Trans. Inf. Theory, Vol.48, pp.1277-1294, Jun. 2002. https://doi.org/10.1109/TIT.2002.1003822
  9. M. Sharif and B. Hassibi, "On the capacity of MIMO broadcast channels with partial side information," IEEE Trans. Inf. Theory, Vol.51, pp.506-522, Feb. 2005. https://doi.org/10.1109/TIT.2004.840897
  10. W.-Y. Shin, S.-Y. Chung, and Y. H. Lee, "Improved power-delay trade-off in wireless networks using opportunistic routing," IEEE Trans. Inf. Theory, under review for possible publication, [Online]. Available: http://arxiv.org/abs/0907.2455.
  11. C. Shen and M. P. Fitz, "Opportunistic spatial orthogonalization and its application to fading cognitive radio networks," preprint, [Online]. Available: http://arxiv.org/abs/0904.4283.
  12. O. Oyman, "Opportunistic scheduling and spectrum reuse in relay-based cellular networks," IEEE Trans. Wireless Commun., Vol.9, pp.1074-1085, Mar. 2010. https://doi.org/10.1109/TWC.2010.03.081306
  13. G. Kramer, M. Gastpar, and P. Gupta, "Cooperative strategies and capacity theorems for relay networks," IEEE Trans. Inf. Theory, Vol.51, No.9, pp.3037-3063, Sep. 2005. https://doi.org/10.1109/TIT.2005.853304
  14. A. Reznik, S. Kulnarni, and S. Verdu, "Broadcast-relay channel: capacity region bounds," in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Adelaide, Australia, Sep. 2005, pp.820-824.
  15. 3Gpp.(2010, Mar.) Further advancements for EUTRA: Physical layer aspect. TR 36.814 V2.0.1 Tech. Spec.n Group Radio Access Network Rel. 9 3GPP.
  16. S. T. Chung and A. J. Goldsmith, "Degrees of freedom in adaptive modulation: A unified view," IEEE Trans. Commun., Vol.49, pp.1561-1571, Sep. 2001. https://doi.org/10.1109/26.950343
  17. M.-S. Alouini and A. J. Goldsmith, "Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques," IEEE Trans. Veh. Technol., Vol.48, pp.1165-1181, Jul. 1999. https://doi.org/10.1109/25.775366
  18. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes. 4th edition, McGraw-Hill, 2002.
  19. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. 7th edition, Academic Press, 2007.
  20. D. E. Knuth, "Big Omicron and big Omega and big Theta," ACM SIGACT News, Vol.8, pp.18-24, Apr.-Jun. 1976. https://doi.org/10.1145/1008328.1008329