위상잠금 열화상기법을 이용한 복합재 튜브 충격 손상 결함 측정

Defect Detection of Impacted Composite Tubes by Lock-in Photo-Infrared Thermography Technique

  • 김경석 (조선대학교 기계설계공학과) ;
  • 전소영 (조선대학교 대학원 첨단부품소재공학과) ;
  • 정현철 (조선대학교 기계설계공학과)
  • 투고 : 2011.02.19
  • 심사 : 2011.04.07
  • 발행 : 2011.04.30

초록

충격에 의한 복합재 튜브의 내부 박리 현상은 항공 우주 및 자동차 산업 등에서 흔히 발생되어져 왔다. 이러한 복합재 구조물의 안전성을 평가하기 위해서는 적외선열화상기법(IRT)과 같은 복합재 구조물의 내부 결함을 검출할 수 있는 비파피검사가 필요하다. 적외선 열화상 이미지 패턴 분석에 의해서 내부 결함이 발생한 복합재 튜브의 내 외부 결함 부위를 확인할 수 있다. 본 연구에서는 적외선열화상기법을 이용하여 충격 하중에 따른 복합재 튜브 표면에서 방출하는 적외선 에너지를 감지하여 열 분배로부터 복합재 튜브의 내부 결함을 검출하는 연구를 수행하였다.

The problem of delamination of composite tubes by impact has been acknowledged in aerospace and automobile industry. Non-destructive testing(NDT) methods in composite material structure are important to evaluate reliability of composite structure. There are many kinds of NDT methods which can detect the inside defect of the composite material such as Infrared Thermography(IRT). Infrared thermal imaging of object is different from that of a defect, in heated composite tubes with an internal defect, and then location and size of a defect can be measured by the analysis of thermal imaging pattern. In this study, Lock-in Infrared thermography detect internal defects of Impacted composite tubes by the inspection of infrared lay radiated from the surface of composite tubes.

키워드

과제정보

연구 과제 주관 기관 : 한국에너지기술평가원(KETEP)

참고문헌

  1. A. G. Mamalis and D. E. Manolaks, "Crashworthy behavior of thin-walled tubes of fibergalss composite materials subjected to axial loading," J. Composite Materials, Vol. 24, pp. 72-91 (1990) https://doi.org/10.1177/002199839002400104
  2. C. H. Chiu and C. K. Lu., "Crushing characteristics of 3-D braided composite suare tubes," J. Composite Materials, Vol. 31, pp. 2309-2327 (1997) https://doi.org/10.1177/002199839703102205
  3. C. H. Chiu, K. H. Tsai and W. J. Huang, "Effects of braiding parameters on energy absorption capability of triaxially braided composite tubes," J. Composite Materials, Vol. 32, pp. 1964-1983 (1998) https://doi.org/10.1177/002199839803202105
  4. Vistasp M. Karbhari, "Energy absorption characteristics of hybrid braided composite tubes," J. Composite, Vol. 31, pp. 1164-1186 (1997) https://doi.org/10.1177/002199839703101201
  5. X. P. V. Maldague, Nondestuctive Testing Handbook: Infrared and Thermal Testing, Vol. 3, ASNT, pp.12-20 (2001)
  6. S. M. Chang, S. H. Lee and H. M. Kwon," Electromagnetism induction heating and application," Proceedings of the IEEE, Vol. 50, No. 2, pp. 8-14 (2001)
  7. H. E. Horng, J. T. Jeng, H. C. Yang and J. C. Chen, "Evaluation of the flaw depth using high-T SQUID," Physica. C, Superconductivity, Vol. 367, No. 1/4, pp. 303-307 (2002) https://doi.org/10.1016/S0921-4534(01)01021-8
  8. G. Gaussorgurs, Infrared Themography, pp. 375-431. Translated by S. Chomet, Champman & Hall, London, (1994)
  9. K. S. Kang, M. Y. Choi, J. H. Park, K. S. Kim and S. M. Yang, "Determining size and location of subsurface defects of steel plate by lock-in thermography," 12th Asia-Pacific Confernce on Non-Destructive Test, pp. 48 (2006)
  10. M. Y. Choi, "The utilization of nondestructive testing and defects diagnosis using infrared thermography," Journal of the Korean Society for Nondestructive Testing, Vol. 24, No. 5, pp. 525-531, (2004)
  11. D. Wu, and G. Busse, "Lock-in thermography for nondestructive evaluation of materials," Rev. Gen. Therm., Vol. 37, pp. 693-703. (1998) https://doi.org/10.1016/S0035-3159(98)80047-0
  12. D. C. Shin and H. M. Kwon, "Development a high-efficiency induction heating heater using a 5[kW] class full-bridge high frequency resonant inverter," Proceedings of the IEEE, Vol. 10, No. 5, pp. 481-487 (2005)