DOI QR코드

DOI QR Code

Reconstruction of 3D Building Model from Satellite Imagery Based on the Grouping of 3D Line Segments Using Centroid Neural Network

중심신경망을 이용한 3차원 선소의 군집화에 의한 위성영상의 3차원 건물모델 재구성

  • Woo, Dong-Min (Department of Electronics Engineering, Myongji University) ;
  • Park, Dong-Chul (Department of Electronics Engineering, Myongji University) ;
  • Ho, Hai-Nguyen (Department of Electronics Engineering, Myongji University) ;
  • Kim, Tae-Hyun (Department of Electronics Engineering, Myongji University)
  • Received : 2011.02.07
  • Accepted : 2011.03.21
  • Published : 2011.04.30

Abstract

This paper highlights the reconstruction of the rectilinear type of 3D rooftop model from satellite image data using centroid neural network. The main idea of the proposed 3D reconstruction method is based on the grouping of 3D line segments. 3D lines are extracted by 2D lines and DEM (Digital Elevation Map) data evaluated from a pair of stereo images. Our grouping process consists of two steps. We carry out the first grouping process to group fragmented or duplicated 3D lines into the principal 3D lines, which can be used to construct the rooftop model, and construct the groups of lines that are parallel each other in the second step. From the grouping result, 3D rooftop models are reconstructed by the final clustering process. High-resolution IKONOS images are utilized for the experiments. The experimental result's indicate that the reconstructed building models almost reflect the actual position and shape of buildings in a precise manner, and that the proposed approach can be efficiently applied to building reconstruction problem from high-resolution satellite images of an urban area.

본 논문에서는 중심신경망을 이용하여 위성영상으로부터 직사각형 형태의 3차원 건물의 지붕모델을 재구성하는 방법을 연구하였다. 제안된 3차원 지붕모델 재구성 기법의 핵심은 3차원 선소의 군집화에 있다. 이를 위해 한 쌍의 스테레오 영상으로부터 구해진 DEM (Digital Elevation Map) 데이터와 2차원 선소에 의해서 3자원 선소를 발생하였다. 제안된 군집화 과정은 중심신경망을 이용한 방법에 의해 수행되며, 2단계로 구성된다. 첫 번째 단계에서는 선소 추출과정에서 끊어지거나, 중복된 3차원 선소를 건물을 이루는 주된 선소로 군집화하고, 두 번째 단계에서는 건물을 구성하는 주된 선소를 구하기 위해 서로 평행인 선소들의 군으로 군집화를 수행한다. 이 군집화 결과를 최종 클러스터링 과정을 통해 직사각형 형태의 지붕모델로 재구성하게 된다. 제안된 방법이 대전지역의 고해상도 IKONOS 위성영상에 의해 실험되었다. 재구성된 건물모델이 원래 건물의 위치와 형태를 대체로 정확히 반영하여, 본 논문에서 제안된 기법을 고해상도 위성영상에 적용하여 도시지역의 건물모델을 구축하는데 효과적으로 사용될 수 있음이 입증되었다.

Keywords

References

  1. 예철수, 전승헌, 이호영, 이쾌희, 2003. 선소의 추출과 그룹화를 이용한 원격탐사영상에서 건물 지붕의 복원, 대한원격탐사학회지, 19(2), 159-169. https://doi.org/10.7780/kjrs.2003.19.2.159
  2. 조홍범, 조우석, 박준구, 송낙현, 2008. 항공 LiDAR 데이터를 이용한 3차원 건물모델링, 대한원격탐사학회지, 24(2), 141-152. https://doi.org/10.7780/kjrs.2008.24.2.141
  3. Collins, R. T., C. O. Jaynes, Y. Q. Cheng, X. Wang, F. Stolle, E. M. Riseman, and A. R. Hanson, 1998. The Ascender system: automated site modeling from multiple aerial images, Computer Vision and Image Understanding, 72(2): 143-162. https://doi.org/10.1006/cviu.1998.0729
  4. Fischer, A., T. Kolbe, and F. Lang, 1997. Integration of 2D and 3D reasoning for building Reconstruction using a generic hierarchical model. Proc. of Workshop Semantic Modeling for the Acquisition of Topographic Information, Bonn, Germany, 1997.
  5. Grodecki, J. and G. Dial, 2001. IKONOS geometric accuracy. Proc. of Joint Workshop of ISPRS Working Groups I/2, I/5 and IV/7 on High Resolution Mapping from Space, 2001, 19-21.
  6. Huertas, A. and R. Nevatia, 1998. Detecting buildings in aerial images, Computer Vision, Graphics, and Image Processing, 41(2): 131-152. https://doi.org/10.1016/0734-189x(88)90016-3
  7. Kim, Z. and R. Nevatia, 2004. Automatic description of complex buildings from multiple images, Computer Vision and Image Understanding, 96(1): 60-95. https://doi.org/10.1016/j.cviu.2004.05.004
  8. Kim, T., T. Javzandulam, and T. Lee, 2007. Semiautomatic reconstruction of building height and footprints from single satellite images. Proc. of IEEE International Geoscience and Remote Sensing Symposium, 2007, 4737- 4740.
  9. Mayunga, S., Y. Zhang, and D. Coleman, 2007. A semi-automated approach for extracting buildings from QuickBird imagery applied to informal settlement mapping, International Journal of Remote Sensing, 28(10): 2343-2357. https://doi.org/10.1080/01431160600868474
  10. Nacken, P. F. M., 1993. A metric for line segments, IEEE Trans. Pattern Analysis and Machine Intelligence, 15(12): 1312-1318. https://doi.org/10.1109/34.250848
  11. Park, D., 2000. Centroid neural network for unsupervised competitive learning, IEEE Trans. on Neural Network, 11(2): 520-528. https://doi.org/10.1109/72.839021
  12. Perona, P. and W. Freeman, 1998. A factorization approach to grouping. Proc. of European Conference on Computer Vision, 1998, 655-670.
  13. Perona, P. and J. Malik, 1990. Scale-space and edge detection using anisotropic diffusion, IEEE Trans. on Pattern. Anal. Mach. Intell., 12(7), 629- 639. https://doi.org/10.1109/34.56205
  14. Shi, J. and J. Malik, 2000. Normalized cuts and image segmentation, IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(8): 888- 905. https://doi.org/10.1109/34.868688
  15. Sohn, G. and I. Dowman, 2001, Extraction of buildings from high-resolution satellite data. Automatic extraction of man-made objects from aerial and space images (III), Baltsavias, E., Gruen, A., Gool, L. V. (eds.), A. A. Balkema Publishers, 2001, 345-354.
  16. Suveg, I. and G. Vosselman, 2004. Reconstruction of 3D building models from aerial images and map. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3-4): 202-224. https://doi.org/10.1016/j.isprsjprs.2003.09.006