Abstract
Estimation of biomass carbon stock is an important research for estimation of public benefit of forest. Previous studies about biomass carbon stock estimation have limitations, which come from the used deterministic models. The most serious problem of deterministic models is that deterministic models do not provide any explanation about the relevant effects of errors. In this study, the effects of location errors were analyzed in order to estimation of biomass carbon stock of Danyang area using Monte Carlo simulation method. More specifically, the k-Nearest Neighbor(kNN) algorithm was used for basic estimation. In this procedure, random and systematic errors were added on the location of Sample plot, and effects on estimation error were analyzed by checking the changes of RMSE. As a result of random error simulation, mean RMSE of estimation was increased from 24.8 tonC/ha to 26 tonC/ha when 0.5~1 pixel location errors were added. However, mean RMSE was converged after the location errors were added 0.8 pixel, because of characteristic of study site. In case of the systematic error simulation, any significant trends of RMSE were not detected in the test data.
산림의 바이오매스 탄소저장량을 추정하는 것은 산림의 공익적인 가치를 평가하기 위해 선행되어야 하는 연구이다. 하지만 기존의 바이오매스 탄소저장량 추정에 관한 연구는 대부분 결정론적 모델이 사용되어 오차에 의한 영향을 알 수 없다는 한계를 가진다. 본 연구에서는 단양군의 지상부 바이오매스 탄소저장량 추정의 경우를 대상으로 몬테카를로 시뮬레이션을 통해 위치 오차에 의한 추정오차의 영향을 분석하고자 하였다. 기본적인 추정 방법으로는 kNN 알고리즘이 사용되었으며, 표본점의 위치에 우연오차 및 계통오차를 추가하여 RMSE의 변화를 통해 추정오차에 미치는 영향을 분석하였다. 분석결과 일반적인 위성영상에서 발생 할 수 있는 0.5~1 영상소의 위치오차에 의해 추정의 평균 RMSE가 24.8 tonC/ha에서 26 tonC/ha로 증가하는 것으로 확인되었으며, 추정 오차의 범위는 23.8 tonC/ha에서 28.1 tonC/ha로 나타났다. 하지만, 대상지역의 특성에 의해 0.8 영상소 이상의 우연오차에 대해서는 더 이상의 RMSE 증가가 없이 수렴하는 것으로 확인되었다. 방향을 고려한 계통오차에 대한분석의 경우 실험자료에서 특정한 경향은 발견되지 않았다.