DOI QR코드

DOI QR Code

Geochemical Variation of Hwangsan Volcanic Complex by Large Hydrothermal Alteration

대규모 열수변질작용에 따른 황산 화산암복합체의 지구화학적 변화특성

  • Kim, Eui-Jun (Domestic/North Korea Mineral Resources Group, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM)) ;
  • Hong, Young-Kook (Domestic/North Korea Mineral Resources Group, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM)) ;
  • Chi, Se-Jung (Domestic/North Korea Mineral Resources Group, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM))
  • 김의준 (한국지질자원연구원 광물자원연구본부 국내/북한자원연구실) ;
  • 홍영국 (한국지질자원연구원 광물자원연구본부 국내/북한자원연구실) ;
  • 지세정 (한국지질자원연구원 광물자원연구본부 국내/북한자원연구실)
  • Received : 2011.01.04
  • Accepted : 2011.03.26
  • Published : 2011.04.28

Abstract

The Hwangsan volcanic rocks, hosting the Moisan epithermal Au-Ag deposit arc widely distributed throughout the Seongsan district, and associated with large hydrothermal alteration. They were analyzed as the Moisan and around voleanic rocks, and most of them show dacitic to rhyolitic compositions. Hydrothermal alteration related to epithermal system causes the host rocks to show the geochemical variation due to high mobility of alkali elements. These features can be applied for quantitative estimates of alteration intensity. Alteration intensity of volcanic rocks from the Moisan ranges from subtle to intense, based on AI vs. $Na_2O$ diagram. The pattern that ($CaO+Na_2O$) content decrease with increasing $K_2O$ content results from sericitic alteration, in which hydrothermal fluids continually provide $K^+$ into country rocks but remove $Ca^{2+}$ and $Na^{2+}$ of feldspars within country rocks. The decrease of ($CaO+Na_2O$) with decreasing $K_2O$ in some samples from the Moisan may be caused by advanced argillic alteration that all alkali elements are entirely removed from country rocks by acid hydrothermal fluids. Two alteration trends, based on Al and CCPI alteration indices suggest both sericitic alterations of feldsaprs to illite and sericite+chlorite$^{\circ}{\ae}$pyritc alteration of high Mg and Fe activities. Trace and Rare Earth Elements patterns show the similar geochemical variation related to hydrothermal alteration. Of LIL elements, strong depletion of $Sr^{2+}$, substituting for $Ca^{2+}$ in feldspars, appears to be resulted from removal of $Ca^{2+}$, during replacement of feldspars to alumino-silicates or phyllo silicates minerals by hydrothermal fluids. Relatively low total REEs contents (Moisan: 119-182 ppm; Seongsan: 111-209 ppm) and gently negative slopes suggest that significant mobility of LREEs appear to occur during hydrothermal alteration.

모이산-은산 천열수 금-은광상을 배태하고 있는 황산 화산암들은 성산지구 전반에 널리 분포하며, 대규모 열수변질작용을 수반한다. 열수변질작용에 따른 지구화학적 변화특성을 파악하기 위해 모이산과 주변 화산암으로 구분하여 분석되었으며, 이들은 대체적으로 석영안산암질 내지 유문암질 조성을 갖는다. 천열수계에서 수반되는 열수변질작용은 모암으로부터 알카리원소들을 쉽게 유동시키기 때문에, 일정한 지구화학적 변화를 보인다. 이러한 특성은 열수변질작용의 정도를 정량화하는데 적용될 수 있다. 모이산 화산암들의 AI지수에 따른 $Na_2O$ 함량변화는 미약한 정도에서부터 상당히 강한 변질작용을 수반하는 단계로 정량화 될 수 있다. $K_2O$ 함량의 증가에 따른 $CaO+Na_2O$ 함량의 감소는 열수유체로부터 지속적인 $K^+$의 유입과 모암 내 장석류들의 $Ca^{2+}$$Na^{2+}$성분들이 제거되는 견운모화작용의 결과로 이해된다. 일부 모이산 화산암들의 선적인 변화는 강산 열수유체로부터 모든 알카리 성분들이 완전히 제거되는 강고령토변질작용의 결과로 이해될 수 있다. 또한 AI지수와 CCPI지수의 변화양상은 함금-은 석영맥을 형성시킨 광화유체의 유입으로 모이산 화산암들의 장석류가 일라이트로 교대되는 견운모변질작용과 Mg와 Fe의 활동도 증가에 따른 견운모+녹니석+황철석 변질작용에 해당하는 두 가지 변질양상을 갖는다. 미량원소 및 희토류원소들에서도 열수변질작용과 관련된 지구화학적 변화특성을 보인다. 친지각원소인 $Sr^{2+}$ 의 상당한 결핍은 열수변질작용동안 장석류들이 알루미나 규산염광물 혹은 충상규산염광물들로 변질되는 과정에서 $Ca^{2+}$가 제거되면서 이를 치환하고 있는 $Sr^{2+}$이 함께 제거된 것으로 보인다. 상대적으로 낮은 총 희토류함량(모이산: 119-182 ppm; 성산지구:111-209 ppm)과 완만한 부의 기울기는 열수변질작용동안 상당한 LREE원소들이 제거되었음을 지시된다.

Keywords

Acknowledgement

Grant : 해남 천열수 금광화대 및 열수변질 점토광화대 확보를 위한 전주기 기술개발

Supported by : 한국지질자원연구원

References

  1. Bowden, C.D. (2007) Epithermal systems of the Seongsan district, South Korea; an investigation on the geological setting and spatial and temporal relationship between high and low sulfidation systems. Unpublished Ph.D. thesis, James Cook University, Australia, 334p.
  2. Chough, S.K., Kwon, S.T., Ree, J.H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korean peninsula; a review and new view. Earth Science Reviews, v.52, p.175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  3. Cluzel,D., Lee, B.J. and Cadet, J.P. (1991) Indosinian dextral ductile fault system and synkinematic plutonism in the southwest of the Ogcheon belt (South Korea). Tectonophysics, v.194, p.131-151. https://doi.org/10.1016/0040-1951(91)90277-Y
  4. Condie. K.C. (1989) Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: Identification and significance. Lithos, v.23, p.1-18. https://doi.org/10.1016/0024-4937(89)90020-0
  5. Cooke, D.R. and Simmons, S.F. (2000) Characteristics and genesis of epithermal gold deposits: in Hagemann, S.G., and Brown, P.E., eds., Gold in 2000: Reviews in Economic Geology, v.13, p.221-244.
  6. Dongen, M.V., Weinberg, R.F. and Tomkings A.G. (2010) REE-Y, Ti, and P remobiliation in magmatic rocks by hydrothermal alteration during Cu-Au deposit formation. Economic Geology, v.105, p.763-776. https://doi.org/10.2113/gsecongeo.105.4.763
  7. Eilu, P., Mikucki, E.J. and Groves, D.I. (1997) Wallrock alteration and primary geochemical dispersion in lode-gold exploration: 4th biennial meeting of the Society for Geology Applied to Mineral Deposits, Turku, Finland, Ausgust 11-13, 1997, Short course notes, p.65.
  8. Einaudi, M.T., Hedenquist, J.W. and Inan, E.E. (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments: in Simmons, S.F., and Graham, I., eds., Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth, Society of Economic Geologists, Special Publication 10, p.285-313.
  9. Evensen, N.M., Hamilton, P.J. and O'Nions, R.K. (1978) Rare earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta., v.42, p.1199-1212. https://doi.org/10.1016/0016-7037(78)90114-X
  10. Gill, J.B. (1981) Orogenic andesites and plate tectonics. Springer-Verlag, Berlin, 336p.
  11. Ishikawa, Y., Sawaguchi, T., Iwaya, S. and Horiuchi, M. (1976) Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos. Mining Geology, v.26, p.105-117.
  12. Kim, I.J. (1991) Geochemistry of hydrothermal alteration and clay deposits in the Haenam area, southwestern Korea. Unpublished Ph.D. thesis, University of Tokyo, Japan, 238p.
  13. Kim, I.J. and Kusakabe, M. (1993) Oxygen and hydrogen isotope studies of the hydrothermal clay deposits and surrounded rocks in the Haenam area, southwestern part of the Korean Peninsula. Journal of Korean Institute of Mining Geology, v.26, p.11-20.
  14. Kim, I.J. and Nagao, K. (1992) K-Ar ages of the hydrothermal clay deposits and the surrounding igneous rocks in southwest Korea. Journal of Petrological Society of Korea, v.1, p.58-70.
  15. Koh, S.M. (1996) Geochemical characteristics of the Cretaceous volcanic rocks and Bukok hydrothermal deposits in the Haenam volcanic field, Chollanamdo, Korea. Unpublished Ph.D. thesis, Seoul National University, Korea, 181p.
  16. Koh, S.M. and Chang, H.W. (1997) Geological and geochemical characteristics of the Bukok hydrothermal clay deposits in the Haenam area, Korea. Resource Geology, v.47, p.29-40.
  17. Koh, S.M., Takagi, T., Kim, M.Y., Hong, S.S. and Sudo, S. (2000) Geological and geochemical characteristics of the hydrothermal clay alteration in South Korea. Resource Geology, v.50, p.229-242. https://doi.org/10.1111/j.1751-3928.2000.tb00072.x
  18. Kwon, S.T. and Ree, J.H. (1997) A note on the age of the Honam Shear Zone. Journal of Geological society of Korea. v.33, p.183-188.
  19. Large, R.R., Gemmell, J.B. and Paulick, H. (2001) The alteration box plot - a simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanichosted massive sulfide deposits. Economic Geology, v.96, p.957-972.
  20. Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R. and Zanettin, B. (1989) A classification of igneous rocks and glossory of terms. Blackwell, Oxford, 254p.
  21. Lee, D.W. (1999) Strike-slip fault tectonics and basin formation during the Cretaceous in the Korean Peninsula. The Island Arc, v.8, p.218-231. https://doi.org/10.1046/j.1440-1738.1999.00233.x
  22. Lofgren G. (1971) Spherulitic textures in glassy and crystalline rocks. J. Geophys. Res., v.76, p.4279-4299.
  23. MacLean, W.H. and Barrett, T.J. (1993) Lighogeochemical techniques using immobile elements. Journal of Geochemical Exploration, v.48, p.109-133. https://doi.org/10.1016/0375-6742(93)90002-4
  24. Moon.H.S., Kim, Y.H., Kim, J.H. and You, J.H. (1990) KAr ages of alunite and sericite in altered rocks, and volcanic rocks around the Haenam area, Southwest Korea. Journal of Korean Institute of Mining Geology, v.23, p.135-131 (in korean with English abstract).
  25. Otoh, S., Jwa. Y.J., Nomura, R. and Sakai, H. (1999) A preliminary AMS (anisottopy of magnetic susceptibility) study of the Namwon granite, southwest Korea. Geoscience Journal, v.3, p.31-41. https://doi.org/10.1007/BF02910232
  26. Thompson, R.N. (1982) British Tertiary volcanic provinces. Scott. Jour. Geol., v.18, p.49-107. https://doi.org/10.1144/sjg18010049
  27. Turek, A. and Kim, J.B. (1995) U-Pb zircon ages of Mesozoic plutons in the Damyang-Geochang area, Ryeongnam massif, Korea. Geochemical Journal, v.29, p.243-258. https://doi.org/10.2343/geochemj.29.243
  28. Yanai, S., Park, B.S. and Otoh, S. (1985) The Honam shear zone (South Korea): deformation and tectonic implication in the Far East. Scient. Pap. College Arts Sci., Univ. Tokyo, v.35, p.181-210.
  29. Yoon, C.H. (1993) Gold abundance in acid-sulphate alteration zone of the Ogmaesan-Seongsan ore dpeosits in Haenam area, Korea. Journal of Korean Institute of Mining Geology, v.26, p.155-166.
  30. Yoon, C.H. (1995) Variation of gold content in rocks and minerals from the Seongsan and Ogmaesan clay deposits in the Haenam area, Korea. Economic Environmental Geology, v.28, p.571-577.
  31. Yonn, C.H., Kim, S.W. and Park, H.S. (2007) Application of alteration indices for geochemical exploration of clay mineral deposit in the hydrothermal alteration zone of the Nohwa Island, Wando. The Korean Society for Geosystem Engineering, v.40, p.110-118.

Cited by

  1. Occurrence and Geochemical Characteristics of the Haenam Pb-Zn Skarn Deposit vol.47, pp.4, 2014, https://doi.org/10.9719/EEG.2014.47.4.363
  2. Chemical Behaviors of Elements and Mineral Compositions in Fault Rocks from Yangbuk-myeon, Gyeongju City, Korea vol.22, pp.2, 2013, https://doi.org/10.7854/JPSK.2013.22.2.137
  3. Potential Mapping of Moisan area Using SIP and 3D Geological Modeling vol.17, pp.4, 2014, https://doi.org/10.7582/GGE.2014.17.4.209
  4. Geological Structure of the Moisan Epithermal Au-Ag Mineralized Zone, Haenam and its Tectonic Environment at the Time of the Mineralization vol.44, pp.5, 2011, https://doi.org/10.9719/EEG.2011.44.5.413