Acknowledgement
Supported by : 한국학술진흥재단
References
- Alvanides, S., Openshaw, S., and Duke-Williams, O., 2000, Designing zoning systems for flow data, in Atkinson, P. and Martin, D., (eds.), GIS and Geocomputation. Innovation in GIS 7, Taylor and Francis, London, 115-134.
- Amrhein C. G. and Flowerdew R., 1992, The effect of data aggregation on a Poisson regression-model of Canadian migration, Environment and Planning A, 24(10), 1381-1391. https://doi.org/10.1068/a241381
- Barras, R., Broadbent, T. A., Cordy-Haynes, M., Massey, D. B., Robinson, K., and Willis, J., 1971, An operational urban development model for Cheshire, Environment and Planning A, 3(2),115-234. https://doi.org/10.1068/a030115
- Batty M. and Sikdar, P. K., 1982a, Spatial aggregation in gravity models. 1. An information-theoretic framework, Environment and Planning A, 14(3), 377-405. https://doi.org/10.1068/a140377
- Batty M. and Sikdar, P. K., 1982b, Spatial aggregation in gravity models: 2. One-dimensional population density models, Environment and Planning A, 14(4), 525-553. https://doi.org/10.1068/a140525
- Batty M. and Sikdar, P. K., 1982c, Spatial aggregation in gravity models: 3. Two-dimensional trip distribution and location models, Environment and Planning A, 14(5), 629-658. https://doi.org/10.1068/a140629
- Batty M. and Sikdar, P.K., 1982d, Spatial aggregation in gravity models: 4. Generalisations and largescale applications, Environment and Planning A, 14(6), 795-822. https://doi.org/10.1068/a140795
- Brown, L. A. and Holmes, J. H., 1971, The delimitation of functional regions, nodal regions and hierarchies by functional distance approaches, Journal of Regional Science, 11(1), 57-72. https://doi.org/10.1111/j.1467-9787.1971.tb00240.x
- Chun, Y., 2008, Modeling network autocorrelation within migration flows by eigenvector spatial filtering, Journal of Geographical Systems, 10(4), 317-344. https://doi.org/10.1007/s10109-008-0068-2
- Flowerdew, R. and Aitkin, M., 1982, A Method of Fitting the Gravity Model Based on the Poisson Distribution, Journal of Regional Science, 22(2), 191-202. https://doi.org/10.1111/j.1467-9787.1982.tb00744.x
- Fotheringham, A. S. and O'Kelly, M. E., 1989, Spatial Interaction Models: Formulations and Applications, Kluwer Academic Publishers, Dordrecht, Netherlands.
- Guo, D., 2009, Flow Mapping and Multivariate Visualization of Large Spatial Interaction Data, IEEE Transactions on Visualization and Computer Graphics, 15(6), 1041-1048. https://doi.org/10.1109/TVCG.2009.143
- Hirst, M. A., 1977, Hierarchical aggregation procedures for interaction data: a comment, Environment and Planning A, 9(1), 99-103. https://doi.org/10.1068/a090099
- Kim, K., 2004, Heuristic approaches for p-median location-allocation problem, Journal of Geography Education, 48, 14-30.
- Kim, K., Lee, G., and Shin, J., 2010, A study on reconstructing of local administrative districts using spatial analysis and modeling, Journal of the Korean Association of Regional Geographers, 16(6), 673-688 (in Korean).
- Kim, K., Shin, J., Lee, G., and Cho, D., 2009, A location model and algorithm for visiting health-care districting for the rural elderly, Journal of the Korean Geographical Society, 44(4), 813-831 (in Korean).
- Lee, S., 1999, The delineation of function regions and modifiable areal unit problem, Journal of Geographical and Environmental Education, 7(2), 757-783 (in Korean).
- LeSage, J. P. and Pace, R. K., 2008, Spatial econometric modeling of origin-destination flows, Journal of Regional Science, 48(5), 941-967. https://doi.org/10.1111/j.1467-9787.2008.00573.x
- Masser, I. and Brown, P. J. B. (eds.), 1978, Spatial Representation and Spatial Interaction, Martinus Nijhoff Social Sciences Division, Boston.
- Masser, I. and Brown, P. J. B., 1975, Hierarchical aggregation procedures for interaction data, Environment and Planning A, 7(5), 509-523. https://doi.org/10.1068/a070509
- Masser, I. and Scheurwater, J., 1980, Functional regionalisation of spatial interaction data: an evaluation of some suggested strategies, Environment and Planning A, 12(12), 1357- 1382. https://doi.org/10.1068/a121357
- Nelder, J. A. and Wedderburn, R. W. M., 1972, Generalized Linear Models, Journal of the Royal Statistical Society A, 135(3), 370-384. https://doi.org/10.2307/2344614
- Openshaw, S. and Taylor, P. J., 1981, The modifiable areal unit problem, in Wrigley, N. and Bennett, R. J., (eds.), Quantitative geography: a British view, Routledge, London, 60-69.
- Openshaw, S., 1977a, A geographical solution to scale and aggregation problems in region-building, partitioning, and spatial modelling, Transactions of the Institute of British Geographers, NewSeries2, 459-472. https://doi.org/10.2307/622300
- Openshaw, S., 1977b, Optimal zoning systems for spatial interaction models, Environment and Planning A, 9(2), 169-184. https://doi.org/10.1068/a090169
- Putman, S. H. and Chung, S-H., 1989, Effects of spatial system design on spatial interaction models. 1: The spatial system definition problem, Environment and Planning A, 21(1), 27-46. https://doi.org/10.1068/a210027
- Ravenstein, E. G., 1885, The laws of migration, Journal of the Statistical Society of London, 48(2), 167- 235. https://doi.org/10.2307/2979181
- Slater, P. B., 1976, A hierarchical regionalization of Japanese prefectures using 1972 interprefectural migration flows, Regional Studies, 10(1), 123- 132. https://doi.org/10.1080/09595237600185121
- Slater, P. B., 1981, Comparisons of aggregation procedures for interaction data: An illustration using a college student international flow table, Socio-Economic Planning Sciences, 15(1), 1-8. https://doi.org/10.1016/0038-0121(81)90012-4
- Teitz, M. B. and Bart, P., 1968, Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph, Operations Research, 16(5), 955-961. https://doi.org/10.1287/opre.16.5.955
- Tiefelsdorf, M. and Boots, B., 1995, The specification of constrained interaction models using the SPSS loglinear procedure, Geographical Systems, 2, 21-38.
- Tiefelsdorf, M., 2003, Misspecifications in interaction model distance decay relations: a spatial structure effect, Journal of Geographical Systems, 5(1), 25-50. https://doi.org/10.1007/s101090300102
- Webber, M. J., 1980, A theoretical analysis of aggregation in spatial interaction models, Geographical Analysis, 12(2), 129-141.