References
- Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biol Plant 54:201-2010 https://doi.org/10.1007/s10535-010-0038-7
- AL-Quraan NA, Locy RD, Singh NK (2010) Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana. Plant Physiol Biochem 48:697-702 https://doi.org/10.1016/j.plaphy.2010.04.011
- Alscher RG, Donahue JH, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224-233 https://doi.org/10.1111/j.1399-3054.1997.tb04778.x
- Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373-399 https://doi.org/10.1146/annurev.arplant.55.031903.141701
- Bergmeyer HU (ed) (1983) Methods of enzymatic analysis, vol 1, 2nd edn. VCH, Weinheim
- Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptation to environmental stresses. Plant Cell 7:1099-1111 https://doi.org/10.1105/tpc.7.7.1099
- Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367-1376 https://doi.org/10.1093/jexbot/53.372.1367
- Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110-115 https://doi.org/10.1016/j.tplants.2004.01.006
- Bouche N, Fait A, Bouchez D, Moller SG, Fromm H (2003) Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA 100:6843-6848 https://doi.org/10.1073/pnas.1037532100
- Bouche N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435-466 https://doi.org/10.1146/annurev.arplant.56.032604.144224
-
Chen YL, Huang RF, Xiao YM, Lu P, Chen J, Wang XC (2004) Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and
$H_2O_2$ . Plant Physiol 136:4096- 4103 https://doi.org/10.1104/pp.104.047837 - Coleman ST, Fang TK, Rovinsky SA, Turano FJ, Moye-Rowley WS (2001) Expression of glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J Biol Chem 276:244-250 https://doi.org/10.1074/jbc.M007103200
- Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875-885 https://doi.org/10.1111/j.1365-3040.2007.01674.x
- Desikan RA, Mackerness S, Hancock JT, Neill SJ (2001) Regulation of Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159-172 https://doi.org/10.1104/pp.127.1.159
- Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47-95 https://doi.org/10.1152/physrev.00018.2001
-
Du L, Poovaiah BW (2005)
$Ca^{+2}$ /Calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature 437:741-745 https://doi.org/10.1038/nature03973 - Harding SA, Oh SH, Roberts DM (1997) Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J 16:1137-1144 https://doi.org/10.1093/emboj/16.6.1137
- Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125:189-198 https://doi.org/10.1016/0003-9861(68)90654-1
- Hendricks SB, Taylorson RB (1975) Breaking of seed dormancy by catalase inhibition. Proc Natl Acad Sci USA 72:306-309 https://doi.org/10.1073/pnas.72.1.306
- Hong ZL, Lakkineni K, Zhang ZM, Verma DPS (2000) Removal of feedback inhibition of pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129-1136 https://doi.org/10.1104/pp.122.4.1129
-
Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M (2007) Calciumcalmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of
$H_2O_2$ production in leaves of maize (Zea mays) plants. New Phytol 173:27-38 https://doi.org/10.1111/j.1469-8137.2006.01888.x - Kumutha D, Ezhimathi K, Sairam RK, Srivastava GC, Deshmukh PS, Meena RC (2010) Waterlogging induced oxidative stress and antioxidant activity in pigeon pea genotypes. Biol Plant 53:75-84
- Kwon SI, Lee H, An CS (2007) Differential expression of three catalase genes in the small radish (Rhaphanus sativus L. var. sativus). Mol Cell 24:37-44
- Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species. Plant development and response to abiotic stresses. Plant Physiol 144:1777-1785 https://doi.org/10.1104/pp.107.101436
- Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405-410 https://doi.org/10.1016/S1360-1385(02)02312-9
- Mittler R, Vanderauwera S, Gollery M, Van-Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490-498 https://doi.org/10.1016/j.tplants.2004.08.009
- Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561-591 https://doi.org/10.1146/annurev.arplant.52.1.561
- Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:472-497
- Neill SJ, Desikan RA, Hancock JT (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388-395 https://doi.org/10.1016/S1369-5266(02)00282-0
- Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333-359 https://doi.org/10.1146/annurev.arplant.50.1.333
- Oracz K, El-Maarouf BH, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50:452-465
- Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65-74 https://doi.org/10.1105/tpc.6.1.65
- Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471-1479 https://doi.org/10.1104/pp.104.042663
- Rogozhin VV, Kuriliuk TT, Filippova NP (2000) Change in the reaction of the antioxidant system of wheat sprouts after UVirradiation of seeds. Biofiz 45:730-736
- Scandalios JG, Guan LM, Polidoros A (1997) Catalases in plants: genestructure, properties, regulation and expression. In: Scandalios JG et al (eds) Oxidative stress and the molecular biology of antioxidant defenses Cold Spring Harbor Laboratory Press, Plainview, pp 343-406
- Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446-452 https://doi.org/10.1016/S1360-1385(99)01486-7
- Simontacchi M, Caro A, Fraga CG, Puntarulo S (1993) Oxidative stress affects [alpha]-tocopherol content in soybean embryonic axes upon imbibition and following germination. Plant Physiol 103:949-953 https://doi.org/10.1104/pp.103.3.949
- Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057-1060 https://doi.org/10.1016/0031-9422(89)80182-7
- Vranova E, Inze D, Van-Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227-1236 https://doi.org/10.1093/jexbot/53.372.1227
- Weber H, Chetelat A, Reymond P, Farmer EE (2004) Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. Plant J 37:877-888 https://doi.org/10.1111/j.1365-313X.2003.02013.x
- Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99:4097-4102 https://doi.org/10.1073/pnas.052564899
- Zhang G, Bown AW (1997) The rapid determination of gammaaminobutyric acid. Phytochemistry 44:1007-1009 https://doi.org/10.1016/S0031-9422(96)00626-7
Cited by
- Characterization of the γ-aminobutyric acid shunt pathway and oxidative damage in Arabidopsis thaliana pop 2 mutants under various abiotic stresses vol.60, pp.1, 2011, https://doi.org/10.1007/s10535-015-0563-5
- Proteomic Analysis of Isogenic Rice Reveals Proteins Correlated with Aroma Compound Biosynthesis at Different Developmental Stages vol.58, pp.2, 2011, https://doi.org/10.1007/s12033-015-9906-x
- γ-Aminobutyric acid (GABA) signalling in plants vol.74, pp.9, 2011, https://doi.org/10.1007/s00018-016-2415-7
- Diverse role of γ-aminobutyric acid in dynamic plant cell responses vol.38, pp.8, 2011, https://doi.org/10.1007/s00299-019-02396-z
- Abiotic Stresses and Non-Protein Amino Acids in Plants vol.38, pp.5, 2011, https://doi.org/10.1080/07352689.2019.1707944
- Emerging Roles of γ Aminobutyric Acid (GABA) Gated Channels in Plant Stress Tolerance vol.10, pp.10, 2011, https://doi.org/10.3390/plants10102178
- Producing high quality mung bean sprout using atmospheric cold plasma treatment: better physical appearance and higher γ‐aminobutyric acid (GABA) content vol.101, pp.15, 2011, https://doi.org/10.1002/jsfa.11317