Inhibition of Rat Lense Aldose Reductase by Flavonoids from Dandelions

  • Mok, So-Youn (Department of Integrative Plant Science, Chung-Ang University) ;
  • Lee, Sul-Lim (Department of Integrative Plant Science, Chung-Ang University) ;
  • Kim, Hye-Min (Department of Integrative Plant Science, Chung-Ang University) ;
  • Lee, Jeong-Min (Department of Integrative Plant Science, Chung-Ang University) ;
  • Lee, Dong-Gu (Department of Integrative Plant Science, Chung-Ang University) ;
  • Ahn, Young-Hee (Department of Integrative Plant Science, Chung-Ang University) ;
  • Park, Chun-Geon (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science) ;
  • Cho, Eun-Ju (Department of Food Science and Nutrition, Pusan National University) ;
  • Lee, Sang-Hyun (Department of Integrative Plant Science, Chung-Ang University)
  • Received : 2011.02.28
  • Accepted : 2011.05.15
  • Published : 2011.06.30

Abstract

The purpose of this study was to evaluate the therapeutic potential of naturally occurring aldose reductase (AR) inhibitors isolated from Korean native plants. The MeOH extract and stepwise polarity fractions of dandelions were tested on rat lens AR inhibition in vitro. Of these, the EtOAc fractions from the leaves of dandelions (Traxacum coreanum, T. officinale, and T. ohwianum) exhibited an AR inhibitory activity ($IC_{50}$ values, 2.37, 1.73 and 2.68 ${\mu}g/ml$, respectively). A chromatography of the EtOAc fraction from the leaves of T. coreanum led to the further isolation of two flavonoids identified as luteolin and luteolin 7-O-glucopyranoside. These compounds exhibited strong AR inhibitory activity, with $IC_{50}$ values of 0.15 and 1.05 ${\mu}M$, respectively. These results suggested that luteolin is a potent AR inhibitor within dandelions and that it could be a useful lead compound in the development of a novel AR inhibitory agent against diabetic complications.

Keywords

References

  1. Ahn, Y.H., Park, D.S., and Chung, K.Y., Analysis of genetic relationship among native Taraxacum and naturalized Taraxacum species using RAPD. Korean J. Environment. Ecol. 14, 265-269 (2003).
  2. Akashi, T., Furuno, T., Takahashi, T. and Ayabe, S.I., Biosynthesis of triterpenoids in cultured cells, and regenerated and wild plant organs of Taraxacum officinale. Phytochemistry. 36, 303-308 (1994). https://doi.org/10.1016/S0031-9422(00)97065-1
  3. Andrew, G.M., Duchowicz, P.R., Fernandez, F.M., Castro E.A., Bennardi, D.O., Autino, J.C. and Romanelli, G.P., QSAR prediction of inhibition of aldose reductase for flavonoids. Bioorg. Med. Chem. 16, 7470-7476 (2008). https://doi.org/10.1016/j.bmc.2008.06.004
  4. Bisset, N.G., Phillipson, J.D., Czygan, F.C., Frohne, D., Höltzel, D., Nagell, A., Pfander, H.J., Willuhn, G. and Buff, W., Herbal drugs and phytopharmaceuticals: A Handbook for Practice on a Scientific Basis. CRC Press, Boca Raton, Ann Arbor, London, Tokyo. p. 486-489, (1994).
  5. Carper, D.A., Hohman, T.C., and Old, S.E., Residues affecting the catalysis and inhibition of rat lens aldose reductase. Biochim. Biophys. Acta. 1246, 67-63 (1995). https://doi.org/10.1016/0167-4838(94)00182-G
  6. Collins, J.G. and Corder, C.N., Aldose reductase and sorbitol dehydrogenase distribution in substructures of normal and diabetic rat lens. Invest. Ophthamol. Vis. Sci. 16, 242-243 (1977).
  7. De la Fuente, J.A. and Manzanaro, S., Aldose reductase inhibitors from natural sources. Nat. Prod. Rep. 20, 243-251 (2003). https://doi.org/10.1039/b204709h
  8. Hansel, R., Kartarahardja, M., Huang, J.T. and Bohlmann, F., Sesquiterpenlacton-$\beta$-D-glucopyranoside sowie ein neues eudesmanolide aus Taraxacum officinale. Phytochemistry. 19, 857-861 (1980). https://doi.org/10.1016/0031-9422(80)85126-0
  9. Hartwig, U.A., Maxwell, C.A., Joseph, C.M., and Phillips, D.A., Chrysoeriol and luteolin released from Alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol. 92, 116-122 (1990). https://doi.org/10.1104/pp.92.1.116
  10. Heo, S.I. and Wang, M.H., Antioxidant activity and cytotoxicity effect of extracts from Taraxacum mongolicum H. Kor. J. Pharmacogn. 39, 255-259 (2008).
  11. Holiman, P.C.H., Hertog, M.G.L., and Katan, M.B., Analysis and health effects of flavonoids. Food Chem. 57, 43-46 (1996). https://doi.org/10.1016/0308-8146(96)00065-9
  12. Jung, M.J., Kang, S.S., Jung, H.A., Kim, G.J., and Choi, J.S., Isolation of flavonoids and a cerebroside from the stem bark of Albizzia julibrissin. Arch. Pharm. Res. 7, 593-599 (2004a)
  13. Jung, S.H., Kang, S.S., Shin, K.H., and Kim, Y.S., Inhibitory effects of naturally occurring flavonoids on the rat lens aldose reductase. Nat. Prod. Sci. 10, 35-39 (2004b).
  14. Kato, A., Yasuko, H., Goto, H., Hollinshead, J., Nash, R.J., and Adachi, I., Inhibitory effect of rhetsinine isolated from Evodia rutaecarpa on aldose reductase activity. Phytomedicine. 16, 258-261 (2009). https://doi.org/10.1016/j.phymed.2007.04.008
  15. Kawanishi, K., Ueda, H., and Moriyasu, M., Aldose reductase inhibitors from the nature. Curr. Med. Chem. 10, 1353-1374 (2003). https://doi.org/10.2174/0929867033457304
  16. Kisiel, W. and Barszcz, B., Further sesquiterpenoids and phenolics from Taraxacum officinale. Fitoterapia. 71, 269-273 (2000). https://doi.org/10.1016/S0367-326X(99)00158-6
  17. Lee, Y.M., Kim, N.H., Kim, J.M., Kim Y.S., Jang, D.S., Kim, J.H., Bae, K.H., and Kim, J.S., Screening of inhibitory effect on aldose reductase of Korean herbal medicines and preventive effect of Catalpa bignonioides against xylose-induced lens opacity. Kor. J. Pharmacogn. 39, 165-173 (2008).
  18. Onal, S., Timur, S., Okutucu, B., and Zihnioglu, F., Inhibition of $\alpha$- glucosidase by aqueous extract of some potent antidiabetic medicinal herbs. Prep. Biochem. Biotechnol. 35, 29-36 (2005). https://doi.org/10.1081/PB-200041438
  19. Sato, S. and Kador, P.F., Inhibition of aldehyde reductase by aldose reductase inhibitors. Biochem. Pharmacol. 40, 1033-1042 (1990). https://doi.org/10.1016/0006-2952(90)90490-C
  20. Shin, K.H., Kang, S.S., Seo, E.A., and Shin, S.W., Isolation of aldose reductase inhibitors from the flowers of Chrysanthemum Boreale. Arch. Pharm. Res. 18, 65-68 (1995). https://doi.org/10.1007/BF02979135
  21. Williams, C.A., Goldstone, F., and Greenham, J., Flavonoids, cinnamic acids and coumarins from the different tissues and medicinal preparations of Taraxacum officinale. Phytochemistry. 42, 121-127 (1996). https://doi.org/10.1016/0031-9422(95)00865-9
  22. Wolbis, M., Krolikowska, M., and Bednarek, P., Polyphenolic compounds in Taraxacum officinale. Acta Poloniae Pharm. Drug Res. 50, 153- 159 (1993).
  23. Yawadio, R., Tanimori, S., and Morita, N., Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities. Food Chem. 101, 1616-1625 (2007). https://doi.org/10.1016/j.foodchem.2006.04.016
  24. Yoon, T.J., Effect of water extracts from root of Taraxacum officinale on innate and adaptive immune responses in mice. Kor. J. Food Nutr. 21, 275-282 (2008).