Effects of Glipizide on the Pharmacokinetics of Losartan after Oral and Intravenous Administration in Rats

흰쥐에서 글리피지드가 로살탄의 약물동태에 미치는 영향

  • Received : 2011.04.28
  • Accepted : 2011.06.01
  • Published : 2011.06.30

Abstract

The present study was to investigate the effect of glipizide on the pharmacokinetics of losartan in rats. Losartan was administered intravenously (3 mg/kg) and orally (9 mg/kg) in the presence and absence of glipizide (0.3 and 1 mg/kg) to rats. The pharmacokinetic parameters of losartan were significantly altered by the presence of glipizide compared with the control group (given losartan alone). Presence of glipizide significantly (p<0.05, 0.3 mg/kg) increased the area under the plasma concentration-time curve (AUC) of losartan by 48.2% and peak plasma concentration ($C_{max}$) of losartan by 47.4%. Consequently, the absolute bioavailability (AB%) of losartan in the presence of glipizide was 38%, which was enhanced significantly (p<0.05) compared to that in the oral control group (25%). The relative bioavailability (RB%) of losartan increased by 1.18- to 1.48-fold in the presence of glipizide. However, there was no significant change in the peak plasma concentration ($T_{max}$) and terminal half-life ($T_{1/2}$) of losartan in the presence of glipizide. In contrast, glipizide did not affect the pharmacokinetics of intravenous losartan. In conclusion, the presence of glipizide significantly enhanced the oral bioavailability of losartan, implying that glipizide might be mainly to inhibit the cytochrome P450 (CYP) 2C9-mediated metabolism, resulting in reducing gastrointestinal and/or hepatic first-pass metabilism of losartan rather than in reducing P-glycoprotein-mediated efflux and renal elimination of losartan. Concurrent use of glipizide with losartan should require close monitoring for potential drug interactions.

Keywords

References

  1. Javier, D. : Review of the molecular pharmacology of losartan and its possiblerelevance to stroke prevention in patients with hypertension. Clinical. Therapeutics. 28, 832 (2006). https://doi.org/10.1016/j.clinthera.2006.06.002
  2. McIntyre, M., Caffe, S. E., Michalak, R. A. and Reid, J. L. : Losartan, an orally active angiotensin (AT1) receptor antagonist: a review of its efficacy and safety in essential hypertension. Pharmacol. Ther. 74, 181 (1997).
  3. Inagami, T., Iwai, N., Sasaki, K., Yamamo, Y., Bardhan, S., Chaki, S., Guo, D. F. and Furuta. H. : Cloning, expression and regulation of angiotensin II receptors. J. Hypertens. 8, 713 (1992).
  4. Lo, M. W., Goldberg, M. R., McCrea, J. B., Lu, H., Furtek, C. I. and Bjornsson, T. D. : Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite EXP-3174 in humans. Clin. Pharmacol. Ther. 58, 641 (1995). https://doi.org/10.1016/0009-9236(95)90020-9
  5. Soldner, A., Hildegard, S. L. and Mutschler, E. : HPLC assays to simultaneously determine the angiotensin-AT1 antagonist losartan as well as its main and active metabolite EXP-3174 in biological material of humans and rats. J. Pharm. Biomed. Anal. 16, 863 (1998). https://doi.org/10.1016/S0731-7085(97)00128-3
  6. Soldner, A., Christians, U., Susanto, M., Wacher, V. J., Silverman, J. A. and Benet, L. Z. : Grapefruit juice activates Pglycoprotein- mediated drug transport. Pharm. Res. 16, 478 (1999). https://doi.org/10.1023/A:1011902625609
  7. Stearns, R. A., Chakravarty, P. K., Chen, R. and Chiu, S. H. : Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome P4502C and 3A subfamily members. Drug Metab. Dispos. 23, 207 (1995).
  8. Stearns, R. A., Miller, R. R., Doss, G. A., Chakravarty, P. K., Rosegay, A., Gatto, G. J. and Chiu, S. H. : The metabolism of DuP 753, a nonpeptide angiotensin II receptor antagonist, by rat, monkey, and human liver slices. Drug Metab. Dispos. 20, 281 (1992).
  9. Yun, C. H., Lee, H. S., Lee, H., Rho, J. K., Jeong, H. G. and Guengerich, F. P. : Oxidation of the angiotensin II receptor antagonist losartan (DuP 753) in human liver microsomes. Role of cytochrome P4503A(4) in formation of the active metabolite EXP3174. Drug. Metab. Dispos. 23, 285 (1995).
  10. Meadowcroft, A. M., Williamson, K. M., Patterson, J. H., Hinderliter, A. L. and Pieper, J. A. : The effects of fluvastatin, a CYP2C9 inhibitor, on losartan pharmacokinetics in healthy volunteers. J. Clin. Pharmacol. 39, 418 (1999). https://doi.org/10.1177/00912709922007886
  11. Kaukonen, K. M., Olkkola, K. T. and Neuvonen, P. J. : Fluconazole but not itraconazole decreases the metabolism of losartan to E-3174. Eur. J. Clin. Pharmacol. 53, 445 (1998).
  12. McCrea, J. B., Cribb, A., Rushmore. T., Osborne, B., Gillen, L., Lo, M. W., Waldman, S., Bjornsson, T., Spielberg, S. and Goldberg, M. R. : Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-3174. Clin. Pharmacol. Ther. 65, 348 (1999). https://doi.org/10.1016/S0009-9236(99)70114-1
  13. Wacher, V. J., Salphati, L. and Benet, L. Z. : Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv. Drug. Deliv. Rev. 46, 89 (2001). https://doi.org/10.1016/S0169-409X(00)00126-5
  14. Gottesman, M. M. and Pastan, I. : Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62, 385 (1993). https://doi.org/10.1146/annurev.bi.62.070193.002125
  15. Gan, L. S. L., Moseley, M. A., Khosla, B., Augustijns, P. F., Bradshaw, T. P., Hendren, R. W. and Thakker, D. R. : CYP3ALike cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells: interaction between the two biochemical barriers to intestinal transport. Drug. Metab. Dispos. 24, 344 (1996).
  16. Wacher, V. H., Silverman, J. A., Zhang, Y. and Benet, L. Z. : Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J. Pharm. Sci. 87, 1322 (1998). https://doi.org/10.1021/js980082d
  17. Ito, K., Kusuhara, H. and Sugiyama, Y. : Effects of intestinal CYP3A4 and P-glycoprotein on oral drug absorption theoretical approach. Pharm. Res. 16, 225 (1999). https://doi.org/10.1023/A:1018872207437
  18. Gottesman, M. M. and Pastan, I. : Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62, 385 (1993). https://doi.org/10.1146/annurev.bi.62.070193.002125
  19. Gan, L. S., Moseley, M. A., Khosla, B., Augustijns, P. F., Bradshaw, T. P., Hendren, R. W. and Thakker, D.R. : CYP3ALike cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells: interaction between the two biochemical barriers to intestinal transport. Drug Metab. Dispos. 24, 344 (1996).
  20. Watkins, P. B. : The barrier function of CYP3A4 and Pglycoprotein in the small bowel. Adv. Drug Deliv. Rev. 27, 161 (1996).
  21. Wacher, V. H., Silverman, J. A., Zhang, Y. and Benet, L.Z. : Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J. Pharm. Sci. 87, 1322 (1998). https://doi.org/10.1021/js980082d
  22. Ito, K., Kusuhara, H. and Sugiyama, Y. : Effects of intestinal CYP3A4 and P-glycoprotein on oral drug absorption theoretical approach. Pharm. Res. 16, 225 (1999). https://doi.org/10.1023/A:1018872207437
  23. Reynolds, J. E. F. : Martindale - The Extra Pharmacopeia, Pharmaceutical Press. London (1993).
  24. Kradjan, W. A., Takeuchi, K. Y., Opheim, K. E. and Wood, F. C. Jr. : Pharmacokinetics and pharmacodynamics of glipizide after once-daily and divided doses. Pharmacotherapy 15, 465 (1995).
  25. Marchetti, P. and Navalesi, R. : Pharmacokinetic-pharmacodynamic relationships of oral hypoglycaemic agents. An update. Clin. Pharmacokinet. 16, 100 (1989). https://doi.org/10.2165/00003088-198916020-00004
  26. Marchetti, P., Giannarelli, R., di Carlo, A. and Navalesi, R. : Pharmacokinetic optimisation of oral hypoglycaemic therapy. Clin. Pharmacokinet. 21, 308 (1991). https://doi.org/10.2165/00003088-199121040-00006
  27. Wahlin-Boll, E., Almer, L. O. and Melander, A. : Bioavailability, pharmacokinetics and effects of glipizide in type 2 diabetics. Clin. Pharmacokinet. 7, 363 (1982). https://doi.org/10.2165/00003088-198207040-00006
  28. Zarghi, A., Foroutan, S. M., Shafaati, A. and Khoddam, A. : A rapid HPLC method for the determination of losartan in human plasma using a monolithic column. Arzneimittelforschung. 55, 569 (2005).
  29. Kaminsky, L. S. and Fasco, M. J. : Small intestinal cytochromes P450. Crit. Rev. Toxicol. 21, 407 (1991).
  30. Choi, D. H., Li, C. and Choi, J. S. : Effects of myricetin, an antioxidant, on the pharmacokinetics of losartan and its active metabolite, EXP-3174, in rat: possible role of cytochrome P450 3A4, cytochrome P450 2C9 and P-glycoprotein inhibition by myricetin. J. Pharm. Pharmacol. 62, 908 (2010) https://doi.org/10.1211/jpp.62.07.0012
  31. Connacher, A. A., el Debani, A. H., Isles, T. E. and Stevenson, I. H. : Disposition and hypoglycaemic action of glipizide in diabetic patients given a single dose of nifedipine. Eur. J. Clin. Pharmacol. 33, 81 (1987). https://doi.org/10.1007/BF00610385
  32. Niemi, M., Backman, J. T., Neuvonen, P. J. and Kivisro, K. T. : Effects of rifampin on the pharmacokinetics and pharmacodynamics of glyburide and glipizide. Clin. Pharmacol. Ther. 69, 400 (2001). https://doi.org/10.1067/mcp.2001.115822
  33. Kradjan, W. A., Witt, D. M., Opheim, K. E. and Wood, F. C. Jr. : Lack of interaction between glipizide and co-trimoxazole. J. Clin. Pharmacol. 34, 997 (1994). https://doi.org/10.1002/j.1552-4604.1994.tb01972.x
  34. Kivisto, K. T. and Neuvonen, P. J. : Enhancement of absortion and effect of glipizide by magnesium hydroxide. Clin. Pharmacol. Ther. 49, 39 (1991). https://doi.org/10.1038/clpt.1991.7
  35. Arauz-Pacheco, C., Ramirez, L. C., Rios, J. M. and Raskin, P. : Hypoglycemia induced by angiotensin-converting enzyme inhibitors in patients with non-insulin dependent diabetes recieving sulfonylurea therapy. Am. J. Med. 89, 811 (1990). https://doi.org/10.1016/0002-9343(90)90227-5
  36. Lewis, D. F. V. : Cytochrome P450. Substrate specificity and metabolism. In: Cytochromes P450. Structure, Function, and Mechanism. pp. 122-123. Taylor & Francis: Bristol. (1996).
  37. Cao, X., Gibbs, S. T., Fang, L., Miller, H. A., Landowski, C. P., Shin, H. C., Lennernas, H., Zhong, Y., Amidon, G. L., Yu, L. X. and Sun, D. : Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm. Res. 23, 1675 (2006). https://doi.org/10.1007/s11095-006-9041-2
  38. Kolars, J. C., Schmiedlin-Ren, P., Schuetz, J. D., Fang, C. and Watkins, P. B. : Identification of rifampin-inducible P450IIIA4 (CYP2C9) in human small bowel enterocytes. J. Clin. Invest. 90, 1871 (1992). https://doi.org/10.1172/JCI116064