3D-QSAR Analysis on Antidepressant Activity of Tricyclic Isoxazole Analogues against Medetomidine-induced Loss of Righting

Medetomidine에 유발된 정좌반사소실에 대한 Tricyclic Isoxazole 유도체들의 항우울성에 관한 3D-QSAR 분석

  • Choi, Min-Sung (Sky Solution Inc., Business Incubation Center, Chungnam National University) ;
  • Sung, Nack-Do (Sky Solution Inc., Business Incubation Center, Chungnam National University) ;
  • Myung, Pyung-Keun (College of Pharmacy, Chungnam National University)
  • Received : 2010.08.27
  • Accepted : 2011.04.08
  • Published : 2011.04.30

Abstract

To search the minimum structural requirement of tricyclic isoxazole analogues (1~30) as new class potent antidepressant, thee-dimensional quanti- tative-structure relationship (3D-QSAR) models between substituents ($R_1{\sim}R_5$) of tricyclic isoxazoles and their antidepressant activity against medetomidine-induced loss of righting were performed and discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indies analysis (CoMSIA) methods. The correlativity and predictability ($r^2$=0.484 and $q^2$=0.947) of CoMSIA-2 model were higher than those of the rest models. The inhibitory activity against medetomidine-induced loss of righting was dependent on electrostatic field (43.4%), hydrophobic field (35.3%), and steric field (21.2%) of tricyclic isoxazoles. From the CoMSIA-2 contour maps, it is predicted that the antidepressant activity of potent antidepressants against medetomidine-induced loss of righting will be able to increase by the substituents ($R_1{\sim}R_5$) which were in accord with CoMSIA field.

Keywords

References

  1. Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J. and Monteggia, L. M. : Neurobiology of depression. Neuron. 34, 13 (2002). https://doi.org/10.1016/S0896-6273(02)00653-0
  2. Hindmarch, I. : Expanding the horizons of depression: beyond the monoamine hypothesis. Hum. Psychopharmacol. 16, 203 (2001). https://doi.org/10.1002/hup.288
  3. French, N. : Alpha 2-adrenoceptors and I2 sites in the mammalian central nervous system. Pharmacol. Ther. 68, 175 (1995). https://doi.org/10.1016/0163-7258(95)02005-5
  4. Bylund, D. B. : Subtypes of alpha 2-adrenoceptors: pharmacological and molecular biological evidence converge. Trends. Pharmacol. Sci. 9, 356 (1988). https://doi.org/10.1016/0165-6147(88)90254-4
  5. Bylund, D. B. : Subtypes of alpha 1- and alpha 2-adrenergic receptors. FASEB J. 6, 832 (1992). https://doi.org/10.1096/fasebj.6.3.1346768
  6. Bylund, D. B., Eikenberg, D. C., Hieble, J. P., Langer, S. Z., Lefkowitz, R. J., Minneman, K. P., Molinoff, P. B., Ruffolo, R. R., Jr. and Trendelenburg, U. : International Union of Pharmacology nomenclature of adreno-ceptors. Pharmacol. Rev. 46, 121 (1994).
  7. Bylund, D. B., Ray-Prenger, C. and Murphy, T. J. : Alpha-2A and alpha-2B adrenergic receptor subtypes: antagonist binding in tissues and cell lines containing only one subtype. J. Pharmacol. Exp. Ther. 245, 600 (1988).
  8. Hein, L. and Kobilka, B. K. : Adrenergic receptor signal transduction and regulation. Neuropharmacology 34, 357 (1995). https://doi.org/10.1016/0028-3908(95)00018-2
  9. Lomasney, J. W., Cotecchia, S., Lorenz, W., Leung, W. Y., Schwinn, D. A., Yang-Feng, T. L., Brownstein, M., Lefkowitz, R. J. and Caron, M. G. : Molecular cloning and expression of the cDNA for the alpha 1A-adrenergic receptor. The gene for which is located on human chromosome 5. J. Biol. Chem. 266, 6365 (1991).
  10. Puolivali, J., Bjorklund, M., Holmberg, M., Ihalainen, J. A., Scheinin, M. and Tanila, H. : Alpha 2C-adrenoceptor mediated regulation of cortical EEG arousal. Neuropharmacology 43, 1305 (2002). https://doi.org/10.1016/S0028-3908(02)00305-2
  11. MacDonald, E. and Scheinin, M. : Distribution and pharmacology of alpha 2-adrenoceptors in the central nervous system. J. Physiol. Pharmacol. 46, 241 (1995).
  12. Rosin, D. L., Talley, E. M., Lee, A., Stornetta, R. L., Gaylinn, B. D., Guyenet, P. G. and Lynch, K. R. : Distribution of alpha 2C-adrenergic receptor-like immunoreactivity in the rat central nervous system. J. Comp. Neurol. 372, 135 (1996). https://doi.org/10.1002/(SICI)1096-9861(19960812)372:1<135::AID-CNE9>3.0.CO;2-4
  13. Orito, K., Kishi, M., Imaizumi, T., Nakazawa, T., Hashimoto, A., Mori, T. and Kambe, T. : alpha(2)-adrenoceptor antagonist properties of OPC-28326, a novel selective peripheral vasodilator. Br. J. Pharmacol. 134, 763 (2001). https://doi.org/10.1038/sj.bjp.0704309
  14. Starke, K. : Regulation of noradrenaline release by presynaptic receptor systems. Rev. Physiol. Biochem. Pharmacol. 77, 1 (1977).
  15. Starke, K. : Presynaptic alpha-autoreceptors. Rev. Physiol. Biochem. Pharmacol. 107, 73 (1987).
  16. Hertel, P., Fagerquist, M. V. and Svensson, T. H. : Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by alpha2 adrenoceptor blockade. Science 286, 105 (1999). https://doi.org/10.1126/science.286.5437.105
  17. Tellez, S., Colpaert, F. and Marien, M. : Acetylcholine release in the rat prefrontal cortex in vivo: modulation by alpha 2- adrenoceptor agonists and antagonists. J. Neurochem. 68, 778 (1997).
  18. Raiteri, M., Maura, G., Folghera, S., Cavazzani, P., Andrioli, G. C., Schlicker, E., Schalnus, R. and Gothert, M. : Modulation of 5-hydroxytryptamine release by presynaptic inhibitory alpha 2-adrenoceptors in the human cerebral cortex. Naunyn Schmiedebergs Arch. Pharmacol. 342, 508 (1990).
  19. Beyer, C. E., Lin, Q., Rosenzweig-Lipson, S. and Schechter, L. E. : Alpha 2A-adrenoceptors enhance the serotonergic effects of fluoxetine. Eur. J. Pharmacol. 539, 164 (2006). https://doi.org/10.1016/j.ejphar.2006.03.083
  20. Blier, P. : Pharmacology of rapid-onset antidepressant treatment strategies. J. Clin. Psychiatry 62 Suppl 15, 12 (2001). https://doi.org/10.4088/JCP.v62n0104
  21. Greene, S. A. : Pros and cons of using alpha-2 agonists in small animal anesthesia practice. Clin. Tech. Small. Anim. Pract. 14, 10 (1999). https://doi.org/10.1016/S1096-2867(99)80022-X
  22. Hirst, G. and McKirdy, H. : Presynaptic inhibition at mammalian peripheral synapse? Nature 250, 430 (1974). https://doi.org/10.1038/250430a0
  23. Doze, V. A., Chen, B. X. and Maze, M. : Dexmedetomidine produces a hypnotic-anesthetic action in rats via activation of central alpha-2 adrenoceptors. Anesthesiology 71, 75 (1989). https://doi.org/10.1097/00000542-198907000-00014
  24. Sinclair, M. D. : A review of the physiological effects of alpha2- agonists related to the clinical use of medetomidine in small animal practice. Can. Vet. J. 44, 885 (2003).
  25. Flacke, W., Flacke, J., McIntee, D., Blow, K. and Bloor, B. : Dexmedetomidine: effects of the alpha2 agonist on the isolated mammalian heart. Anesthesiology 71, A543 (1989). https://doi.org/10.1097/00000542-198909001-00543
  26. Maze, M. : Clinical Uses of [alpha] 2 Agonists. ASA Refresher Courses in Anesthesiology 20, 133 (1992). https://doi.org/10.1097/00126869-199220000-00013
  27. Vainio, O. : Alpha-2 adrenergic agonists and antagonists. 6th Proc Int Cong Vet Anaes, 75 (1997).
  28. Andres, J. I., Alcazar, J., Alonso, J. M., Alvarez, R. M., Cid, J. M., De Lucas, A. I., Fernandez, J., Martinez, S., Nieto, C., Pastor, J., Bakker, M. H., Biesmans, I., Heylen, L. I. and Megens, A. A. : Synthesis of 3a,4-dihydro-3H- [1]benzopyrano [4,3-c]isoxazoles, displaying combined 5-HT uptake inhibiting and alpha(2)-adrenoceptor antagonistic activities: a novel series of potential antidepressants. Bioorg. Med. Chem. Lett. 13, 2719 (2003). https://doi.org/10.1016/S0960-894X(03)00525-0
  29. Andres, J. I., Alcazar, J., Alonso, J. M., Alvarez, R. M., Bakker, M. H., Biesmans, I., Cid, J. M., De Lucas, A. I., Fernandez, J., Font, L. M., Hens, K. A., Iturrino, L., Lenaerts, I., Martinez, S., Megens, A. A., Pastor, J., Vermote, P. C. and Steckler, T. : Discovery of a new series of centrally active tricyclic isoxazoles combining serotonin (5-HT) reuptake inhibition with alpha2-adrenoceptor blocking activity. J. Med. Chem. 48, 2054 (2005). https://doi.org/10.1021/jm049619s
  30. Andres, J. I., Alcazar, J., Alonso, J. M., De Lucas, A. I., Iturrino, L., Biesmans, I. and Megens, A. A. : Synthesis of 7-amino-3a, 4-dihydro-3H-[1]- benzopyrano[4,3-c]isoxazole derivatives displaying combined alpha2- adrenoceptor antagonistic and 5-HT reuptake inhibiting activities. Bioorg. Med. Chem. 14, 4361 (2006). https://doi.org/10.1016/j.bmc.2006.02.043
  31. Pastor, J., Alcazar, J., Alvarez, R. M., Andres, J. I., Cid, J. M., De Lucas, A. I., Diaz, A., Fernandez, J., Font, L. M., Iturrino, L., Lafuente, C., Martinez, S., Bakker, M. H., Biesmans, I., Heylen, L. I. and Megens, A. A. : Synthesis of 3a,4-dihydro- 3H-[1]benzopyrano [4,3-c]isoxazoles, displaying combined 5- HT uptake inhibiting and alpha2-adrenoceptor antago- nistic activities. Part 2: Further exploration on the cinnamyl moiety. Bioorg. Med. Chem. Lett. 14, 2917 (2004). https://doi.org/10.1016/j.bmcl.2004.03.031
  32. Tripos, S. : Molecular modeling and QSAR software on CDRom (Ver. 7.3), Tripos Associates, Inc., 1699 S. Hanley Road, Suite 303, 63144 (2001).
  33. Vasan, A. and Raju, K. : Comparative analysis of Simulated Annealing, Simulated Quenching and Genetic Algorithms for optimal reservoir operation. Applied Soft Computing 9, 274 (2009). https://doi.org/10.1016/j.asoc.2007.09.002
  34. Clark, M. and Cramer, R. : Comparative molecular field analysis (CoMFA). 2. Toward its use with 3D-structural databases. Tetrahedron Computer Methodology 3, 47 (1990). https://doi.org/10.1016/0898-5529(90)90120-W
  35. Marshall, G., Barry, C., Bosshard, H., Dammkoehler, R. and Dunn, D. : The conformational parameter in drug design: the active analog approach. In Computer-assisted Drug Design 112, 205 (1979).
  36. Soung, M., Lee, Y. and Sung, N. : 3D-QSARs of Herbicidal 2- N-Phenylisoindolin-1-one Analogues as a New Class of Potent Inhibitors of Protox. Bull. Korean Chem. Soc. 30, 613 (2009). https://doi.org/10.5012/bkcs.2009.30.3.613
  37. Wold, S., ohansson, E. and Cocchi, M. : PLS, partial least squares projections to latent structures. 3D QSAR in Drug Design, 523 (1993).
  38. Lindberg, W., Persson, J. and Wold, S. : Partial least-squares method for spectrofluorimetric analysis of mixtures of humic acid and lignin sulfonate. Anal. Chem. 55, 643 (1983). https://doi.org/10.1021/ac00255a014