DOI QR코드

DOI QR Code

Modeling and RPY Motion Analysis of Bipedal Walking Robots

이족 로봇의 보행 모델링 및 롤/피치/요 운동 특성 분석

  • Kim, Byoung-Ho (Biomimetics & Intelligent Robotics Lab., Dept. of Mechatronics Eng., Kyungsung Univ.)
  • 김병호 (경성대학교 메카트로닉스공학과 생체모방 및 지능로봇 연구실)
  • Received : 2011.03.19
  • Accepted : 2011.05.11
  • Published : 2011.06.25

Abstract

This paper presents a virtual-legged walking model for bipedal robots and analyzes its fundamental RPY(Roll, Pitch, and Yaw) motion effects by simulation. For the purpose of identifying the motion effects of the bipedal walking, we assign some arbitrary trajectories both at the center of mass and at the center of pressure of the robot based on human walking. And then we verify the major moments to the roll, pitch, and yaw directions of the robot. As a result, it is shown that those motions are natural in the process of bipedal walking and they are deeply dependent on the step distance, the vertical level of the center of mass, and the acceleration of the robot. The importance of trajectory planning for the footstep location during a bipedal walking is finally addressed in terms of balance.

본 논문에서는 이족 로봇을 위한 가상의 다리에 기반한 보행 모델을 제시한 후, 시뮬레이션을 통하여 제시한 보행 모델의 근본적인 롤/피치/요(roll/pitch/yaw) 운동 특성을 분석한다. 이를 위하여 로봇의 무게 중심과 압력 중심에서의 운동 경로를 사람의 발걸음 운동 패턴과 유사한 임의의 패턴으로 설정하고, 이러한 경로를 따라 보행할 경우에 나타나는 주요 관성 성분 특성을 확인한다. 결과적으로, 이족 보행에서 롤, 피치 및 요 방향으로의 운동은 보행과정에서 생성될 수 있는 자연스러운 현상이며, 이것은 발걸음의 간격, 무게 중심의 위치 및 로봇 몸체의 이동가속도와 밀접한 관계가 있음을 보인다. 또한, 이족보행의 밸런스 관점에서 발의 위치 설정을 위한 경로계획의 중요성을 고찰한다.

Keywords

References

  1. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K, Fujimura, "The intelligent ASIMO: system overview and integration," Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2478-2483, 2002.
  2. Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H.-O. Lim, and A, Takanishi, "Development of a new humanoid robot, WABIAN-2," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2478-2483, 2002.
  3. I. W. Park, J.-Y. Kim, J. Lee, and J.-H. Oh, "Mechanical design of humanoid robot platform KHR-3 (KAIST humanoid robot-3: HUBO)," Proc. of IEEERAS Int. Conf. on Humanoid Robots, pp. 321-325, 2005.
  4. I. Mizuuchi, T. Yoshikai, Y. Sodeyama, Y. Nakanishi, A. Miyadera, T. Yamamoto, T. Niemela, M. Hayashi, J. Urata, Y. Namiki, T. Nishino, and M. Inaba, "Development of musculoskeletal humanoid Kotaro," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 82-87, 2006. https://doi.org/10.1109/ROBOT.2006.1641165
  5. M. Vukobratovic and J. Stepaneko, "On the stability of anthropomorphic systems," Mathematical Biosciences, Vol. 15, pp. 1-37, 1972 https://doi.org/10.1016/0025-5564(72)90061-2
  6. D. G. E. Hobbelen and M. Wisse, "A disturbance rejection measure for limit cycle walkers: the gait sensitivity norm," IEEE Trans. on Robotics, Vol. 23, Vo, 6, pp. 1213-1224, 2007. https://doi.org/10.1109/TRO.2007.904908
  7. P.-B. Wieber, "Viability and predictive control for safe locomotion," Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1103-1108, 2008.
  8. T. Sugihara, Y. Nakamura, and H. Inoue, "Realtime humanoid motion generation through ZMP manipulation based on inverted pendulum control," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1404-1406, 2002. https://doi.org/10.1109/ROBOT.2002.1014740
  9. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. harada, K. Yokoi, and H. Hirukawa, "Biped walking pattern generation by using preview control of zeromoment point," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1620-1626, 2003.
  10. J. Chestnutt, M. Law, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade, "Footstep planning for the Honda ASIMO humanoid," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 631-636, 2005.
  11. A. D. Kuo, "Choosing your steps carefully," IEEE Robotics & Automation Magazine, pp. 18-29, June 2007. https://doi.org/10.1109/MRA.2007.380653
  12. H. Diedam, D. Dimitrov, P.-B. Wieber, K. Mombaur, and M. Diehl, "Online walking gait generation with adaptive foot positioning through linear model predictive control," Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1121-1126, 2008. https://doi.org/10.1109/IROS.2008.4651055
  13. D. L. Wight, E. G. Kubica, and D. W. L. Wang, "Introduction of the foot placement estimator: a dynamic measure of balance for bipedal robotics," Jour. of Computational and Nolinear Dynamics, Vol. 3, Issue 1, January 2008.
  14. S.-K Yun, A. Goswami, and Y. Sakagami, "Safe fall: humanoid robot fall direction change through intelligent stepping and inertia shaping," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 781-787, 2009. https://doi.org/10.1109/ROBOT.2009.5152755

Cited by

  1. Optimal Foot Trajectory Planning of Bipedal Robots Based on a Measure of Falling vol.9, pp.5, 2012, https://doi.org/10.5772/52447