DOI QR코드

DOI QR Code

Effect of MgO and NH4OH on Formation of 5Mg(OH)2·MgSO4·3H2O Whiskers

침상형 5Mg(OH)2·MgSO4·3H2O 형성에 관한 MgO와 NH4OH 영향

  • Yu, Ri (Engineering ceramic center, Korea Institute of Ceramic Engineering & Technology) ;
  • Pee, Jae-Hwan (Engineering ceramic center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Hyung-Tae (Engineering ceramic center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Kyung-Ja (Engineering ceramic center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Young-Woong (TAEJIN GnS Co., LTD.) ;
  • Kim, Woong (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Yoo-Jin (Engineering ceramic center, Korea Institute of Ceramic Engineering & Technology)
  • 유리 (한국세라믹기술원, 엔지니어링 세라믹센터) ;
  • 피재환 (한국세라믹기술원, 엔지니어링 세라믹센터) ;
  • 김형태 (한국세라믹기술원, 엔지니어링 세라믹센터) ;
  • 김경자 (한국세라믹기술원, 엔지니어링 세라믹센터) ;
  • 김영웅 (태진지엔에스) ;
  • 김웅 (고려대학교 신소재공학과) ;
  • 김유진 (한국세라믹기술원, 엔지니어링 세라믹센터)
  • Received : 2011.04.05
  • Accepted : 2011.05.30
  • Published : 2011.06.28

Abstract

Magnesium hydroxide sulfate hydrate whiskers ($5Mg(OH)_2{\cdot}MgSO_4{\cdot}3H_2O$, abbreviated 513 MHSH) were prepared using hydrothermal reaction with magnesium oxide (MgO) and magnesium sulfate ($MgSO_4{\cdot}7H_2O$) as the starting materials. The effects of the molar ratio of $MgSO_4$/MgO and amount of $NH_4OH$ were studied. As a result, 513 MHSH whiskers co-existed with hexagonal plate $Mg(OH)_2$ at low concentration of $SO_4^{2-}$. The molar ratio of $MgSO_4{\cdot}7H_2O$/MgO was 7:1, uniform 513 MHSH whiskers were formed without impurity such as $Mg(OH)_2$. Appropriate amount of $NH_4OH$ has affected to formation of high quality MHSH. Their morphologies and structures were determined by powder X-ray diffraction (XRD) scanning electron microscopy (SEM) and thermo-gravimetric analyzer (TGA).

Keywords

References

  1. H. Iwanaga, T. Iwasaki, K. Reizen, T. Matsunami, M. Ichihara and S. Takeuchi: J. Am. Ceram. Soc., 75 (1992) 1297. https://doi.org/10.1111/j.1151-2916.1992.tb05577.x
  2. H. Lu, Y. Hu, J. Xiao, Z. Wang, Z. Chen and W. Fan: J. Mater. Sci., 41 (2006) 363. https://doi.org/10.1007/s10853-005-2374-0
  3. C. Gao, X. Li, L. Feng, Z. Xiang and D. Zhang: Chem. Eng. J., 150 (2009) 551. https://doi.org/10.1016/j.cej.2008.12.029
  4. X. Yan, D. Xu and D. Xue: Acta Mater., 55 (2007) 5747. https://doi.org/10.1016/j.actamat.2007.06.023
  5. X. T. Sun, W. T. Shi and W. C. Zhu: Nanoscale. Res. Lett., 3 (2008) 386. https://doi.org/10.1007/s11671-008-9171-z
  6. J. Li, L. Xiang and Y. Jin: J. Mater. Sci., 41 (2006) 1345. https://doi.org/10.1007/s10853-006-7339-4
  7. J. Lv, L. Qiu and B. Qu: Nanotechnology, 15 (2004) 1576. https://doi.org/10.1088/0957-4484/15/11/035
  8. C. Yan and D. Sue: J. Phys. Chem. B, 110 (2006) 1581. https://doi.org/10.1021/jp056373+