DOI QR코드

DOI QR Code

Modeling on Daily Traffic Volume of Local State Road Using Circular Mixture Distributions

혼합원형분포를 이용한 지방국도의 시간교통량 추정모형

  • Na, Jong-Hwa (Department of Information & Statistics, Chungbuk National University) ;
  • Jang, Young-Mi (Korea Health and Welfare Information Service)
  • 나종화 (충북대학교 정보통계학과) ;
  • 장영미 (한국보건복지정보개발원)
  • Received : 20110300
  • Accepted : 20110400
  • Published : 2011.06.30

Abstract

In this paper we developed a statistical model for traffic volume data which collected from a spot of specific local state road. One peculiar property of daily traffic data is that it has bimodal shape which have two peaks on times of both going to office and coming back to home. So, various mixture models of circular distribution are suggested for bimodal traffic data and EM algorithms are applied to estimate the parameters of the suggested models. To compare the accuracy of the suggested models, classical regressions with dummy variables are also considered. The suggested models for traffic volumn data can be effectively used to estimate missing values due to measuring instrument disorder.

본 논문에서는 우리나라 지방국도의 특정지점에서 수집된 교통량 자료를 이용하여 일일 시간교통량 추정모형을 개발하였다. 본 연구의 특징은 일일 24시의 시간변수를 원형변수로 취급하고, 지방부 교통량 자료의 특성상 출퇴근 시간에 교통량이 집중되는 이봉형의 현상을 감안하여 원형분포의 혼합모형을 고려하였다. 또한 시간대별 교통량의 분포가 요일에 따라 유사한 패턴을 가지는 데 착안하여 요일별 모형을 제시하였다. 혼합원형분포의 모수추정에는 EM알고리즘이 사용되었으며, 모형의 성능비교를 위해 가변수 회귀모형과의 비교를 실시하였다. 제시된 요일별 지방국도의 시간교통량 적합모형은 계측기의 손상 등으로 인한 교통량 결측자료의 추정에 효과적으로 사용될 수 있다.

Keywords

References

  1. Azzalini, A. (1985). A class of distributions which includes the normal ones, Scandinavian Journal of Statistics, 12, 171-178.
  2. Batschelet, E. (1981). Circular Statistics in Biology, Academic Press, London.
  3. Fisher, N. I. (1993). Statistical Analysis of Circular Data, Cambridge University Press.
  4. Jammalamadaka, S. R. and Kozubowski, T. J. (2003). A new family of circular models : The wrapped Laplace distributions, Advances and Application in Statistics, 3, 77-103.
  5. Jammalamadaka, S. R. and SenGupta, A. (2001). Topics in Circular Statistics, World Scientific.
  6. Jang, Y. M., Yang, D. Y., Lee, J. Y. and Na, J. H. (2007). Modelling on multi-modal circular data using von Mises mixture distribution, The Korean Communications in Statistics, 14, 517-530. https://doi.org/10.5351/CKSS.2007.14.3.517
  7. Mardia, K. V. (1972). Statistics of Directional Data, Academic Press, New York.
  8. Mardia, K. V. and Jupp, P. E. (1999). Directional Statistics, Wiley.
  9. McLachlan, G. and Peel, D. (2000). Finite Mixture Models, Wiley.
  10. Na, J. H. and Jang, Y. M. (2010a). Modeling on asymmetric circular data using wrapped skew-normal mixture, Journal of the Korean Data & Information Science Society, 21, 241-250.
  11. Na, J. H. and Jang, Y. M. (2010b). Modeling sharply peaked asymmetric multi-modal circular data using wrapped Laplace mixture, Journal of the Korean Data & Information Science Society, 21, 863-871.
  12. Papakonstantinou, V. (1979). Bietrage zur Zirkularen Statistik, PhD Dissertation, University of Zurich, Switzerland.
  13. Pewsey, A. (2000). The wrapped skew-normal distribution on the circle, Communications in Statistics: Theory and Methods, 29, 2459-2472. https://doi.org/10.1080/03610920008832616
  14. Titterington, D. M., Smith, A. F. M., and Makov, U. E. (1985). Statistical Analysis of Finite Mixture Distributions, Wiley, Chichester.

Cited by

  1. Modeling Circular Data with Uniformly Dispersed Noise vol.25, pp.4, 2012, https://doi.org/10.5351/KJAS.2012.25.4.651