DOI QR코드

DOI QR Code

Orthogonal Sudoku Square Designs with Block Effect Discrimination

블럭효과를 구별할 수 있는 직교스도쿠방격법

  • Received : 20110100
  • Accepted : 20110300
  • Published : 2011.06.30

Abstract

Sudoku is a famous Latin-square-based number-placement puzzle. Mo and Xu (2008) proposed Sudoku square designs based on the idea of Sudoku. Using several Sudoku square designs which are mutually orthogonal, we can suggest the orthogonal Sudoku square designs with block effect discrimination.

스도쿠는 라틴방격법를 기반으로하는 숫자퍼즐로서 전세계적으로 인기있는 숫자퍼즐이다. Mo와 Xu (2008)는 이 스도쿠의 개념을 이용하여 블럭효과를 구별할 수 있는 스도쿠방격법을 제안하였다. 서로 직교하고 블럭효과를 구별할 수 있는 스도쿠방격법들을 이용하면 우리는 블럭효과를 구별할 수 있는 직교스도쿠방격법을 제안할 수 있다.

Keywords

References

  1. Bailey, R. A., Cameron, P. J. and Connelly, R. (2008). Sudoku, gerechte designs, resolutions, affine space, spreads, reguli, and Hamming codes, American Mathematical Monthly, 115, 383-404.
  2. Bartlett, A. C., Chartier, T. P., Langville, A. N. and Rankin, T. D. (2008). An integer programming model for the Sudoku problem, unpublished paper(http://langvillea.people.cofc.edu/sudoku5.pdf).
  3. Eppstein, D. (2005). Nonrepetitive paths and cycles in graphs with application to Sudoku, unpublished paper(http://arxiv.org/abs/cs/0507053).
  4. Geem, Z. W. (2007). Harmony search algorithm for solving Sudoku, Knowledge-based Intelligent Information and Engineering Systems, Lecture Notes in Computer Science, 4672/2007, 371-378.
  5. Gradwohl, R., Naor, M., Pinkas, B. and Rothblum, G. N. (2009). Cryptographics and physical zero-knowledge proof system for solutions of Sudoku puzzles, Theory of Computing Systems, 44, 245-268. https://doi.org/10.1007/s00224-008-9119-9
  6. Lambert, T., Monfroy, E. and Saubion, F. (2006). A generic framework for local search: Application to the Sudoku problem, Computer Science-ICCS 2006, Lecture Notes in Computer Science, 3991/2006, 641-648.
  7. Lewis, R. (2007a). Metaheuristics can solve Sudoku puzzles, Journal of Heuristics, 13, 387-401. https://doi.org/10.1007/s10732-007-9012-8
  8. Lewis, R. (2007b). On the combination of constraint programming and stochastic search: The Sudoku case, Hybrid Metaheuristics, Lecture Notes in Computer Science, 4771/2007, 96-107.
  9. Lorch, J. (2009a). Mutually orthogonal families of linear Sudoku solutions, Journal of the Australian Mathematical Society, 87, 409-420. https://doi.org/10.1017/S1446788709000123
  10. Lorch, J. (2009b). A quick construction of mutually orthogonal Sudoku solutions, unpublished paper(http://www.cs.bsu.edu/homepages/jdlorch/lorchsudoku.pdf).
  11. Mo, H. and Xu, R. (2008). Sudoku square-a new design in field experiment, Acta Agronomica Sinica, 34, 1489-1493. https://doi.org/10.1016/S1875-2780(09)60001-8
  12. Moon, T. K., Gunther, J. H. and Kupin, J. J. (2009). Sinkhorn solves Sudoku, IEEE Transactions on Information Theory, 55, 1741-1746. https://doi.org/10.1109/TIT.2009.2013004
  13. Moraglio, A., Togelius, J. and Lucas, S. (2006). Product geometric crossover for the Sudoku puzzle, IEEE Congress on Evolutionary Computation, 470-476. https://doi.org/10.1109/CEC.2006.1688347
  14. Nicolau, M. and Ryan, C. (2006). Solving Sudoku with the GAuGE system, Genetic Programming, Lecture Notes in Computer Science, 3905/2006, 213-224.
  15. Pedersen, R. M. and Vis, T. L. (2009). Sets of mutually orthogonal Sudoku Latin squares, The College Mathematics Journal, 40, 174-181. https://doi.org/10.4169/193113409X469389
  16. Santos-Garcia, G. (2007). Solving Sudoku puzzles with rewriting rules, Electronic Notes in Theoretical Computer Science, 176, 79-93.
  17. Yue, T. and Lee, Z. (2006). Sudoku solver by Q'tron neural networks, Intelligent Computing, Lecture Notes in Computer Science, 4113/2006, 943-952.