References
- Gratzel, M. Nature 2001, 414, 338. https://doi.org/10.1038/35104607
- Tae, E. J.; Lee, S. H.; Lee, J. K.; Yoo, S. S.; Kang, E. J.; Yoon, K. B. J. Phys. Chem. B 2005, 109, 22513. https://doi.org/10.1021/jp0537411
- O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
- Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269. https://doi.org/10.1021/ar980112j
- Wang, Z.-S.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Arakawa, H.; Sugihara, H. J. Phys. Chem. B 2005, 109, 3907. https://doi.org/10.1021/jp044851v
- Hara, K.; Dan-oh, Y.; Kasada, C.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. Langmuir 2004, 20, 4205. https://doi.org/10.1021/la0357615
- Hara, K.; Sayama, K.; Ohga, Y.; Shinpo, A.; Suga, S.; Arakawa, H. Chem. Commun. 2001, 569.
- Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597. https://doi.org/10.1021/jp026963x
- Kay, A.; Gratzel, M. J. Phys. Chem. 1993, 97, 6272. https://doi.org/10.1021/j100125a029
- Campbell, W. M.; Burrell, A. K.; Officer, D. L.; Jolley, K. W. Coord. Chem. Rev. 2004, 248, 1363. https://doi.org/10.1016/j.ccr.2004.01.007
- Hara, K.; Kurashige, M.; Ito, S.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. Chem. Commun. 2003, 252.
- Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Yoshihara, T.; Murai, M.; Kurashige, M.; Ito, S.; Shinpo, A.; Suga, S.; Arakawa, H. Adv. Funct. Mater. 2005, 15, 246. https://doi.org/10.1002/adfm.200400272
- Persson, P.; Bergstrom, R.; Lunell, S. J. Phys. Chem. B 2000, 104, 10348. https://doi.org/10.1021/jp002550p
- Frei, H.; Fitzmaurice, D. J.; Gratzel, M. Langmuir 1990, 6, 198. https://doi.org/10.1021/la00091a032
- Moser, J.; Punchihewa, S.; Infelta, P. P.; Gratzel, M. Langmuir 1991, 7, 3012. https://doi.org/10.1021/la00060a018
- Tennakone, K.; Kumarasinghe, A. R.; Kumara, G. R. R. A.; Wijayantha, K. G. U.; Sirimanne, P. M. J. Photochem. Photobiol. A 1997, 108, 193. https://doi.org/10.1016/S1010-6030(97)00090-7
- Rajh, T.; Nedeljkovic, J. M.; Chen, L. X.; Poluektov, O.; Thurnauer, M. C. J. Phys. Chem. B 1999, 103, 3515. https://doi.org/10.1021/jp9901904
- Ramakrishna, G.; Ghosh, H. N.; Singh, A. K.; Palit, D. K.; Mittal, J. P. J. Phys. Chem. B 2001, 105, 12786. https://doi.org/10.1021/jp011078k
- Dimitrijevic, N. M.; Saponjic, Z. V.; Bartels, D. M.; Thurnauer, M. C.; Tiede, D. M.; Rajh, T. J. Phys. Chem. B 2003, 107, 7368. https://doi.org/10.1021/jp034064i
- Wang, Y.; Hang, K.; Anderson, N. A.; Lian, T. J. Phys. Chem. B 2003, 107, 9434. https://doi.org/10.1021/jp034935o
- Huber, R.; Sporlein, S.; Moser, J. E.; Gratzel, M.; Wachtveitl, J. J. Phys. Chem. B 2000, 104, 8995. https://doi.org/10.1021/jp9944381
- Ghosh, H. N.; Asbury, J. B.; Weng, Y.; Lian, T. J. Phys. Chem. B 1998, 102, 10208. https://doi.org/10.1021/jp983502w
- Cherepy, N. J.; Smestad, G. P.; Gratzel, M.; Zhang, J. Z. J. Phys. Chem. B 1997, 101, 9342. https://doi.org/10.1021/jp972197w
- Mulliken, R. S. J. Am. Chem. Soc. 1952, 74, 811. https://doi.org/10.1021/ja01123a067
- Rice, C. R.; Ward, M. D.; Nazeeruddin, M. K.; Gratzel, M. New J. Chem. 2000, 24, 651. https://doi.org/10.1039/b003823g
- Ramakrishna, G.; Verma, S.; Jose, D. A.; Kumar, D. K.; Das, A.; Palit, D. K.; Ghosh, H. N. J. Phys. Chem. B 2006, 110, 9012. https://doi.org/10.1021/jp0552630
- Vrachnou, E.; Gratzel, M.; McEvoy, A. J. J. Electroanal. Chem. 1989, 258, 193. https://doi.org/10.1016/0022-0728(89)85172-1
- Blackbourn, R. L.; Johnson, C. S.; Hupp, J. T. J. Am. Chem. Soc. 1991, 113, 1060. https://doi.org/10.1021/ja00003a060
- Yang, M.; Thompson, D. W.; Meyer, G. J. Inorg. Chem. 2002, 41, 1254. https://doi.org/10.1021/ic011069q
- Khoudiakov, M.; Parise, A. R.; Brunschwig, B. S. J. Am. Chem. Soc. 2003, 125, 4637. https://doi.org/10.1021/ja0299607
- Khoudiakov, M.; Parise, A. R.; Brunschwig, B. S. J. Am. Chem. Soc. 2003, 125, 4637. https://doi.org/10.1021/ja0299607
- Lu, H.; Prieskorn, J. N.; Hupp, J. T. J. Am. Chem. Soc. 1993, 115, 4927. https://doi.org/10.1021/ja00064a079
- Weng, Y.-X.; Wang, Y.-Q.; Asbury, J. B.; Ghosh, H. N.; Lian, T. J. Phys. Chem. B 2000, 104, 93. https://doi.org/10.1021/jp992522a
- Ramakrishna, G.; Ghosh, H. N. J. Phys. Chem. B 2001, 105, 7000. https://doi.org/10.1021/jp011291g
- Walters, K. A.; Gaal, D. A.; Hupp, J. T. J. Phys. Chem. B 2002, 106, 5139. https://doi.org/10.1021/jp015540c
- Murata, T.; Saito, G. Chem. Lett. 2006, 35, 1342. https://doi.org/10.1246/cl.2006.1342
- Murata, T.; Saito, G.; Nishimura, K.; Enomoto, Y.; Honda, G.; Shimizu, Y.; Matsui, S.; Sakata, M.; Drozdova, O. O.; Yakushi, K. Bull. Chem. Soc. Jpn. 2008, 81, 331. https://doi.org/10.1246/bcsj.81.331
- Reddy, P. Y.; Giribabu, L.; Lyness, C.; Snaith, H. J.; Vijaykumar, C.; Chandrasekharam, M.; Lakshmikantam, M.; Yum, J.-H.; Kalyanasundaram, K.; Gratzel, M.; Nazeeruddin, M. K. Angew. Chem. Int. Ed. 2007, 46, 373. https://doi.org/10.1002/anie.200603098
- Basham, J. I.; Mor, G. K.; Grimes, C. A. ACSNANO 2010, 4, 1253.
- Mor, G. K.; Basham, J.; Paulose, M.; Kim, S.; Varghese, O. K.; Vaish, A.; Yoriya, S.; Grimes, C. A. Nano Lett. 2010, 10, 2387. https://doi.org/10.1021/nl100415q
- Hardin, B.; Yum, J.-H.; Hoke, E. T.; Jun, Y. C.; Pechy, P.; Torres, T.; Brongersma, M. L.; Nazeeruddin, M. K.; Gratzel, M.; McGehee, M. D. Nano Lett. 2010, 10, 3077. https://doi.org/10.1021/nl1016688
- Hardin, B. E.; Hoke, E. T.; Armstrong, P, B.; Yum, J.-H.; Comte, P.; Torres, T.; Frechet, J. M. J.; Nazeeruddin, M. K.; Gratzel, M.; McGehee, M. D. Nature Photonics 2009, 3, 406. https://doi.org/10.1038/nphoton.2009.96
- Ito, S.; Murakami, T. N.; Comte, P.; Liska, P.; Gratzel, C.; Nazeeruddin, M. K.; Gratzel, M. Thin Solid Films 2008, 516, 4613. https://doi.org/10.1016/j.tsf.2007.05.090
Cited by
- Chemoselective Palladium-Catalyzed Cyanation of Alkenyl Halides vol.16, pp.8, 2014, https://doi.org/10.1021/ol500618w
- Mild Palladium-Catalyzed Cyanation of (Hetero)aryl Halides and Triflates in Aqueous Media vol.17, pp.2, 2015, https://doi.org/10.1021/ol5032359
- Dithiafulvalene functionalized diketopyrrolopyrrole based sensitizers for efficient hydrogen production vol.17, pp.20, 2015, https://doi.org/10.1039/C5CP01777G
- )-catalyzed cyanation of vinylic C–H bonds: N-cyano-N-phenyl-p-toluenesulfonamide as a cyanation reagent vol.51, pp.59, 2015, https://doi.org/10.1039/C4CC09790D
- Recent advances in the tandem reaction of azides with alkynes or alkynols vol.14, pp.48, 2016, https://doi.org/10.1039/C6OB01965J
- Manganese Catalyzed α-Olefination of Nitriles by Primary Alcohols vol.139, pp.34, 2017, https://doi.org/10.1021/jacs.7b06993
- Atom-Economic Route to Cyanoarenes and 2,2′-Dicyanobiarenes via Iron-Catalyzed Chemoselective [2 + 2 + 2] Cycloaddition Reactions of Diynes and Tetraynes with Alkynylnitriles vol.19, pp.13, 2017, https://doi.org/10.1021/acs.orglett.7b01217
- Rhodium-Catalyzed Cyanation of C(sp2)–H Bond of Alkenes vol.17, pp.15, 2011, https://doi.org/10.1021/acs.orglett.5b01746
- Aryl Nitriles from Alkynes Using tert-Butyl Nitrite: Metal-Free Approach to CC Bond Cleavage vol.18, pp.4, 2011, https://doi.org/10.1021/acs.orglett.6b00147
- Metal-Free Regioselective Monocyanation of Hydroxy-, Alkoxy-, and Benzyloxyarenes by Potassium Thiocyanate and Silica Sulfuric Acid as a Cyanating Agent vol.84, pp.4, 2019, https://doi.org/10.1021/acs.joc.8b02191
- Manganese-Catalyzed α-Olefination of Nitriles with Secondary Alcohols vol.10, pp.None, 2011, https://doi.org/10.1021/acscatal.9b02811
- Switchable Cobalt-Catalyzed α-Olefination and α-Alkylation of Nitriles with Primary Alcohols vol.23, pp.13, 2011, https://doi.org/10.1021/acs.orglett.1c01553
- Practical Synthesis of (Z)-α,β-Unsaturated Nitriles via a One-Pot Sequential Hydroformylation/Knoevenagel Reaction vol.86, pp.21, 2011, https://doi.org/10.1021/acs.joc.1c01953
- First‐Row Transition‐Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account vol.21, pp.12, 2011, https://doi.org/10.1002/tcr.202100165