DOI QR코드

DOI QR Code

Effect of Diamine in Amine-Functionalized MIL-101 for Knoevenagel Condensation

  • Kasinathan, Palraj (Research Group for Nanocatalyst, Korea Research Institute of Chemical Technology) ;
  • Seo, You-Kyong (Research Group for Nanocatalyst, Korea Research Institute of Chemical Technology) ;
  • Shim, Kyu-Eun (Research Group for Nanocatalyst, Korea Research Institute of Chemical Technology) ;
  • Hwang, Young-Kyu (Research Group for Nanocatalyst, Korea Research Institute of Chemical Technology) ;
  • Lee, U-Hwang (Research Group for Nanocatalyst, Korea Research Institute of Chemical Technology) ;
  • Hwang, Dong-Won (Research Group for Nanocatalyst, Korea Research Institute of Chemical Technology) ;
  • Hong, Do-Young (Research Group for Nanocatalyst, Korea Research Institute of Chemical Technology) ;
  • Halligudi, Shiva B. (Research Group for Nanocatalyst, Korea Research Institute of Chemical Technology) ;
  • Chang, Jong-San (Research Group for Nanocatalyst, Korea Research Institute of Chemical Technology)
  • Received : 2011.02.28
  • Accepted : 2011.04.06
  • Published : 2011.06.20

Abstract

Keywords

References

  1. Yaghi, O. M.; O'keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705. https://doi.org/10.1038/nature01650
  2. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127. https://doi.org/10.1126/science.1083440
  3. Rosseinsky, M. J. Nat. Mat. 2010, 9, 609. https://doi.org/10.1038/nmat2823
  4. Latroche, M.; Surble, S.; Serre, C.; Draznieks, C. M.; Lewellyn, P. L.; Lee, J. H.; Chang, J.-S.; Jhung, S. H.; Ferey, G. Angew. Chem. Int. Ed. 2006, 45, 8227. https://doi.org/10.1002/anie.200600105
  5. Hamon, L.; Serre, C.; Devic, T.; Loiseau, T.; Millange, F.; Ferey, G.; Weireld, G. D. J. Am. Chem. Soc. 2009, 131, 8775. https://doi.org/10.1021/ja901587t
  6. Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. Science 2005, 309, 2040. https://doi.org/10.1126/science.1116275
  7. Hwang, Y. K.; Hong, D. Y.; Chang, J.-S.; Jhung, S. H.; Seo, Y. K.; Kim, J. H.; Vimont, A.; Daturi, M.; Serre, C.; Ferey, G. Angew. Chem. Int. Ed. 2008, 47, 4144. https://doi.org/10.1002/anie.200705998
  8. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Nat. Mater. 2010, 9, 172. https://doi.org/10.1038/nmat2608
  9. Hong, D.-Y.; Hwang, Y. K.; Serre, C.; Ferey, G.; Chang, J. S. Adv. Funt. Mater. 2009, 19, 1537. https://doi.org/10.1002/adfm.200801130
  10. Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Moulin, B.; Heurtaux, D.; Clet, G.; Vimont, A.; Greneche, J. M.; Ouay, B. L.; Moreau, F.; Magnier, E.; Filinchuk, Y.; Marrot, J.; Lavalley, J. C.; Daturi, M.; Ferey, G. J. Am. Chem. Soc. 2010, 132, 1127. https://doi.org/10.1021/ja9092715
  11. Kitaura, R.; Seki, K.; Akiyama, G.; Kitagawa, S. Angew. Chem. Int. Ed. 2003, 42, 428. https://doi.org/10.1002/anie.200390130
  12. Tanabe, K. K.; Wang, Z.; Cohen, S. M. J. Am. Chem. Soc. 2008, 130, 8508. https://doi.org/10.1021/ja801848j
  13. Hasegawa, S.; Horike, S.; Matsuda, R.; Furukawa, S.; Mochizuki, K.; Kinoshita, Y.; Kitagawa, S. J. Am. Chem. Soc. 2007, 129, 2607. https://doi.org/10.1021/ja067374y
  14. Gascon, J.; Aktay, U.; Hernandez-Alonso, M. D.; van Klink, G. P. M.; Kapteijn, F. J. Catal. 2009, 261, 75. https://doi.org/10.1016/j.jcat.2008.11.010
  15. Tanabe, K. K.; Cohen, S. M. Angew. Chem. Int. Ed. 2009, 48, 7424. https://doi.org/10.1002/anie.200903433
  16. Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982. https://doi.org/10.1038/35010088
  17. Xamena, F. X. L.; Casanova, O.; Tailleur, R. G.; Garcia, H.; Corma, A. J. Catal. 2008, 255, 220. https://doi.org/10.1016/j.jcat.2008.02.011
  18. Xamena, F. X. L.; Abad, A.; Corma, A.; Garcia, H. J. Catal. 2007, 250, 294. https://doi.org/10.1016/j.jcat.2007.06.004
  19. Hwang, Y. K.; Hong, D.-Y.; Chang, J.-S.; Seo, H.; Kim, J.; Jhung, S. H.; Serre, C.; Ferey, G. Appl. Catal. A. Gen. 2009, 358, 249. https://doi.org/10.1016/j.apcata.2009.02.018
  20. Krishnan, K.; Plane, R. A. Inorg. Chem. 1966, 5, 852. https://doi.org/10.1021/ic50039a031
  21. Young, D. A.; Freedman, T. B.; Lipp, E. D.; Nafie, L. A. J. Am. Chem. Soc. 1986, 108, 7255. https://doi.org/10.1021/ja00283a021
  22. Dean, J. A. In Lange's Handbook of Chemistry, 14th ed.; Smith, S. M., Ed.; McGraw-Hill: New York, 1992; Chap. 8, p 19-71.
  23. Bryantsev, V. S.; Diallo, M. S.; Goddard, W. A. J. Phys. Chem. A 2007, 111, 4422. https://doi.org/10.1021/jp071040t
  24. Gross, K. C.; Seybold, P. G. Inter. J. Quant. Chem. 2000, 80, 1107. https://doi.org/10.1002/1097-461X(2000)80:4/5<1107::AID-QUA60>3.0.CO;2-T
  25. Eian, G. L. U.S patent., 3935012, 1976.
  26. McKittrick, M. W.; Jones, C. W. Chem. Mater. 2003, 15, 1132. https://doi.org/10.1021/cm020952z

Cited by

  1. Adsorption from Ultradilute Gases vol.3, pp.9, 2012, https://doi.org/10.1021/jz300328j
  2. Gas sorption and luminescence properties of a terbium(iii)-phosphine oxide coordination material with two-dimensional pore topology vol.41, pp.26, 2012, https://doi.org/10.1039/c2dt30138e
  3. Synthesis and post-synthetic modification of MIL-101(Cr)-NH2via a tandem diazotisation process vol.48, pp.99, 2012, https://doi.org/10.1039/c2cc36344e
  4. Organic Vapor Sorption in a High Surface Area Dysprosium(III)–Phosphine Oxide Coordination Material vol.51, pp.22, 2012, https://doi.org/10.1021/ic301415p
  5. Metal Organic Frameworks as Solid Catalysts in Condensation Reactions of Carbonyl Groups pp.16154150, 2013, https://doi.org/10.1002/adsc.201200618
  6. Base catalytic activity of alkaline earth MOFs: a (micro)spectroscopic study of active site formation by the controlled transformation of structural anions vol.5, pp.11, 2014, https://doi.org/10.1039/C4SC01731E
  7. Design and fabrication of mesoporous heterogeneous basic catalysts vol.44, pp.15, 2015, https://doi.org/10.1039/C5CS00090D
  8. Polymer microgel particles as basic catalysts for Knoevenagel condensation in water vol.48, pp.8, 2016, https://doi.org/10.1038/pj.2016.44
  9. Acid-base properties and catalytic activity of metal-organic frameworks: A view from spectroscopic and semiempirical methods vol.58, pp.2, 2016, https://doi.org/10.1080/01614940.2016.1128193
  10. Metal-Catecholate Frameworks as Solid Basic Catalysts vol.59, pp.19-20, 2016, https://doi.org/10.1007/s11244-016-0697-5
  11. Amine-functionalized ionic liquid-based mesoporous organosilica as a highly efficient nanocatalyst for the Knoevenagel condensation vol.6, pp.12, 2016, https://doi.org/10.1039/C5CY01666E
  12. (M = Co, Zn, Ni, Cu) in the oxidation of benzyl alcohol vol.6, pp.76, 2016, https://doi.org/10.1039/C6RA12799A
  13. The green Knoevenagel condensation: solvent-free condensation of benzaldehydes vol.10, pp.4, 2017, https://doi.org/10.1080/17518253.2017.1391881
  14. Metal–Organic Frameworks for Heterogeneous Basic Catalysis vol.117, pp.12, 2017, https://doi.org/10.1021/acs.chemrev.7b00091
  15. Enhanced Carbon Dioxide Adsorption on Post-Synthetically Modified Metal-Organic Frameworks vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2705
  16. Syntheses, X-ray structures, catalytic activity and magnetic properties of two new coordination polymers of Co(ii) and Ni(ii) based on benzenedicarboxylate and linear N,N′-donor Schiff base linkers vol.1, pp.5, 2011, https://doi.org/10.1039/c4qi00032c
  17. Tris(2-Aminoethyl)Amine/Metal Oxides Hybrid Materials—Preparation, Characterization and Catalytic Application vol.25, pp.20, 2011, https://doi.org/10.3390/molecules25204689