DOI QR코드

DOI QR Code

Binding Mode Prediction of 5-Hydroxytryptamine 2C Receptor Ligands by Homology Modeling and Molecular Docking Analysis

  • Ahmed, Asif (Neuro-medicine centre, Life Sciences Division, Korea Institute of Science and Technology) ;
  • Nagarajan, Shanthi (Neuro-medicine centre, Life Sciences Division, Korea Institute of Science and Technology) ;
  • Doddareddy, Munikumar Reddy (Neuro-medicine centre, Life Sciences Division, Korea Institute of Science and Technology) ;
  • Cho, Yong-Seo (Neuro-medicine centre, Life Sciences Division, Korea Institute of Science and Technology) ;
  • Pae, Ae-Nim (Neuro-medicine centre, Life Sciences Division, Korea Institute of Science and Technology)
  • Received : 2011.02.08
  • Accepted : 2011.04.04
  • Published : 2011.06.20

Abstract

Serotonin or 5-hydroxytryptamine subtype 2C ($5-HT_{2C}$) receptor belongs to class A amine subfamily of G-protein-coupled receptor (GPCR) super family and its ligands has therapeutic promise as anti-depressant and -obesity agents. So far, bovine rhodopsin from class A opsin subfamily was the mostly used X-ray crystal template to model this receptor. Here, we explained homology model using beta 2 adrenergic receptor (${\beta}$2AR), the model was energetically minimized and validated by flexible ligand docking with known agonists and antagonists. In the active site Asp134, Ser138 of transmembrane 3 (TM3), Arg195 of extracellular loop 2 (ECL2) and Tyr358 of TM7 were found as important residues to interact with agonists. In addition to these, V208 of ECL2 and N351 of TM7 was found to interact with antagonists. Several conserved residues including Trp324, Phe327 and Phe328 were also found to contribute hydrophobic interaction. The predicted ligand binding mode is in good agreement with published mutagenesis and homology model data. This new template derived homology model can be useful for further virtual screening based lead identification.

Keywords

References

  1. Fredriksson, R.; Lagerstrom, M. C.; Lundin, L. G.; Schioth, H. B. Mol. Pharmacol. 2003, 63, 1256. https://doi.org/10.1124/mol.63.6.1256
  2. Takeda, S.; Kadowaki, S.; Haga, T.; Takaesu, H.; Mitaku, S. Febs. Letters 2002, 520, 97. https://doi.org/10.1016/S0014-5793(02)02775-8
  3. Tierney, A. J. Comp. Biochem. Phys. A 2001, 128, 791. https://doi.org/10.1016/S1095-6433(00)00320-2
  4. Hoyer, D.; Hannon, J. P.; Martin, G. R. Pharmacol. Biochem. Be. 2002, 71, 533. https://doi.org/10.1016/S0091-3057(01)00746-8
  5. Hoyer, D.; Clarke, D. E.; Fozard, J. R.; Hartig, P. R.; Martin, G. R.; Mylecharane, E. J.; Saxena, P. R.; Humphrey, P. P. A. Pharmacological Reviews 1994, 46, 157.
  6. Burns, C. M.; Chu, H.; Rueter, S. M.; Hutchinson, L. K.; Canton, H.; SandersBush, E.; Emeson, R. B. Nature 1997, 387, 303. https://doi.org/10.1038/387303a0
  7. Leysen, J. E. Curr. Drug Targets CNS Neurol. Disord. 2004, 3, 11. https://doi.org/10.2174/1568007043482598
  8. Roth, B. L.; Willins, D. L.; Kristiansen, K.; Kroeze, W. K. Pharmacol. Therapeut. 1998, 79, 231. https://doi.org/10.1016/S0163-7258(98)00019-9
  9. Pranzatelli, M. R.; Murthy, J. N.; Pluchino, R. S. J. Pharmacol. Exp. Ther. 1992, 261, 161.
  10. Abramowski, D.; Staufenbiel, M. J. Neurochem. 1995, 65, 782.
  11. Becamel, C.; Alonso, G.; Geleotti, N.; Demey, E.; Jouin, P.; Ullmer, C.; Dumuis, A.; Bockaert, J.; Marin, P. Embo. J. 2002, 21, 2332. https://doi.org/10.1093/emboj/21.10.2332
  12. Niswender, C. M.; Copeland, S. C.; Herrick-Davis, K.; Emeson, R. B.; Sanders-Bush, E. J. Biol. Chem. 1999, 274, 9472. https://doi.org/10.1074/jbc.274.14.9472
  13. Bickerdike, M. J. Current Topics in Medicinal Chemistry 2003, 3, 885. https://doi.org/10.2174/1568026033452249
  14. Smith, B. M.; Thomsen, W. J.; Grottick, A. J. Expert. Opinion on Investigational Drugs 2006, 15, 257. https://doi.org/10.1517/13543784.15.3.257
  15. Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Science 2007, 318, 1258. https://doi.org/10.1126/science.1150577
  16. Farce, A.; Dilly, S.; Yous, S.; Berthelot, P.; Chavatte, P. J. Enzym. Inhib. Med. Ch. 2006, 21, 285. https://doi.org/10.1080/14756360600700608
  17. Ahmed, A.; Choo, H.; Cho, Y. S.; Park, W. K.; Pae, A. N. Bioorganic & Medicinal Chemistry 2009, 17, 4559. https://doi.org/10.1016/j.bmc.2009.05.003
  18. Marti-Renom, M. A.; Stuart, A. C.; Fiser, A.; Sanchez, R.; Melo, F.; Sali, A. Annu. Rev. Bioph. Biom. 2000, 29, 291. https://doi.org/10.1146/annurev.biophys.29.1.291
  19. Berman, H.; Henrick, K.; Nakamura, H.; Markley, J. L. Nucleic. Acids Research 2007, 35, D301. https://doi.org/10.1093/nar/gkl971
  20. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic. Acids Research 2000, 28, 235. https://doi.org/10.1093/nar/28.1.235
  21. Sali, A.; Blundell, T. L. Journal of Molecular Biology 1993, 234, 779. https://doi.org/10.1006/jmbi.1993.1626
  22. Laskowski, R. A.; Macarthur, M. W.; Moss, D. S.; Thornton, J. M. J. Appl. Crystallogr. 1993, 26, 283. https://doi.org/10.1107/S0021889892009944
  23. Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. Journal of Molecular Biology 1996, 261, 470. https://doi.org/10.1006/jmbi.1996.0477
  24. Ennis, M. D.; Hoffman, R. L.; Ghazal, N. B.; Olson, R. M.; Knauer, C. S.; Chio, C. L.; Hyslop, D. K.; Campbell, J. E.; Fitzgerald, L. W.; Nichols, N. F.; Svensson, K. A.; McCall, R. B.; Haber, C. L.; Kagey, M. L.; Dinh, D. M. Bioorg. Med. Chem. Lett. 2003, 13, 2369. https://doi.org/10.1016/S0960-894X(03)00403-7
  25. Welmaker, G. S.; Nelson, J. A.; Sabalski, J. E.; Sabb, A. L.; Potoski, J. R.; Graziano, D.; Kagan, M.; Coupet, J.; Dunlop, J.; Mazandarani, H.; Rosenzweig-Lipson, S.; Sukoff, S.; Zhang, Y. X. Bioorg. Med. Chem. Lett. 2000, 10, 1991. https://doi.org/10.1016/S0960-894X(00)00400-5
  26. May, J. A.; Dantanarayana, A. P.; Zinke, P. W.; McLaughlin, M. A.; Sharif, N. A. J. Med. Chem. 2006, 49, 318. https://doi.org/10.1021/jm050663x
  27. Gross, J. L.; Williams, M. J.; Stack, G. P.; Gao, H.; Zhou, D. USA Patent, WO/2006/116151 2005.
  28. Harada, K.; Aota, M.; Inoue, T.; Matsuda, R.; Mihara, T.; Yamaji, T.; Ishibashi, K.; Matsuoka, N. Eur. J. Pharmacol 2006, 553, 171. https://doi.org/10.1016/j.ejphar.2006.09.042
  29. Lavielle, G.; Muller, O.; Millan, M.; Gobert, A.; Di Cara, B. US Patent 6998403 2006.
  30. Goodacre, C. J.; Bromidge, S. M.; Clapham, D.; King, F. D.; Lovell, P. J.; Allen, M.; Campbell, L. P.; Holland, V.; Riley, G. J.; Starr, K. R.; Trail, B. K.; Wood, M. D. Bioorg. Med. Chem. Lett. 2005, 15, 4989. https://doi.org/10.1016/j.bmcl.2005.08.004
  31. Prous. Drug Data Report 2002, 24, 761.
  32. Patrick, G. L. An Introduction to Medicinal Chemistry; Oxford University Press: New York, 2005.
  33. Thompson, J. D.; Higgins, D. G.; Gibson, T. J. Nucleic Acids Research 1994, 22, 4673. https://doi.org/10.1093/nar/22.22.4673
  34. Muntasir, H. A.; Takahashi, J.; Rashid, M.; Ahmed, M.; Komiyama, T.; Hossain, M.; Kawakami, J.; Nashimoto, M.; Nagatomo, T. Biol. Pharm. Bull. 2006, 29, 1645. https://doi.org/10.1248/bpb.29.1645
  35. Wang, C. D.; Gallaher, T. K.; Shih, J. C. Mol. Pharmacol 1993, 43, 931.
  36. Herrick-Davis, K.; Grinde, E.; Harrigan, T. J.; Mazurkiewicz, J. E. J. Biol. Chem. 2005, 280, 40144. https://doi.org/10.1074/jbc.M507396200
  37. Roth, B. L.; Shoham, M.; Choudhary, M. S.; Khan, N. Mol. Pharmacol 1997, 52, 259. https://doi.org/10.1124/mol.52.2.259
  38. Choudhary, M. S.; Craigo, S.; Roth, B. L. Mol. Pharmacol 1993, 43, 755.
  39. Rashid, M.; Manivet, P.; Nishio, H.; Pratuangdejkul, J.; Rajab, M.; Ishiguro, M.; Launay, J. M.; Nagatomo, T. Life Sciences 2003, 73, 193. https://doi.org/10.1016/S0024-3205(03)00227-3
  40. Rasmussen, S. G. F.; Choi, H. J.; Rosenbaum, D. M.; Kobilka, T. S.; Thian, F. S.; Edwards, P. C.; Burghammer, M.; Ratnala, V. R. P.; Sanishvili, R.; Fischetti, R. F.; Schertler, G. F. X.; Weis, W. I.; Kobilka, B. K. Nature 2007, 450, 383. https://doi.org/10.1038/nature06325
  41. Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266. https://doi.org/10.1126/science.1150609
  42. Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Le Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M.; Miyano, M. Science 2000, 289, 739. https://doi.org/10.1126/science.289.5480.739

Cited by

  1. In Silico Studies Targeting G-protein Coupled Receptors for Drug Research Against Parkinson’s Disease vol.16, pp.6, 2011, https://doi.org/10.2174/1570159x16666180308161642
  2. Pharmacophore Directed Screening of Agonistic Natural Molecules Showing Affinity to 5HT2C Receptor vol.9, pp.10, 2011, https://doi.org/10.3390/biom9100556
  3. Mechanisms of Action of Cassiae Semen for Weight Management: A Computational Molecular Docking Study of Serotonin Receptor 5-HT2C vol.21, pp.4, 2011, https://doi.org/10.3390/ijms21041326