DOI QR코드

DOI QR Code

Selective Trace Analysis of Mercury (II) Ions in Aqueous Media Using SERS-Based Aptamer Sensor

  • Lee, Chank-Il (Department of Electronics & Communication Engineering, Hanyang University) ;
  • Choo, Jae-Bum (Department of Bionano Engineering, Hanyang University)
  • Received : 2011.05.02
  • Accepted : 2011.05.19
  • Published : 2011.06.20

Abstract

We report a highly sensitive surface-enhanced Raman scattering (SERS) platform for the selective trace analysis of mercury (II) ions in drinkable water using aptamer-conjugated silver nanoparticles. Here, an aptamer designed to specifically bind to $Hg^{2+}$ ions in aqueous solution was labelled with a TAMRA moiety at the 5' end and used as a Raman reporter. Polyamine spermine tetrahydrochloride (spermine) was used to promote surface adsorption of the aptamer probes onto the silver nanoparticles. When $Hg^{2+}$ ions are added to the system, binding of $Hg^{2+}$ with T-T pairs results in a conformational rearrangement of the aptamer to form a hairpin structure. As a result of the reduced of electrostatic repulsion between silver nanoparticles, aggregation of silver nanoparticles occurs, and the SERS signal is significantly increased upon the addition of $Hg^{2+}$ ions. Under optimized assay conditions, the concentration limit of detection was estimated to be 5 nM, and this satisfies a limit of detection below the EPA defined limit of 10 nM in drinkable water.

Keywords

References

  1. Campbell, L. M.; Dixon, D.G.; Hecky, R. E. J. Toxicol. Environ. Health B 2003, 6, 325-356. https://doi.org/10.1080/10937400306474
  2. Sekowski, J. K.; Malkas, L. H.; Wei, Y.; Hickey, R. J. Toxicol. Appl. Pharmacol. 1997, 145, 268-276. https://doi.org/10.1006/taap.1997.8185
  3. Onyido, I.; Noris, A. R.; Buncel, E. Chem. Rev. 2004, 104, 5911-5929. https://doi.org/10.1021/cr030443w
  4. Reardon, A. M.; Bhat, H. K. Toxicol. Environ. Chem. 2007, 89, 535-554. https://doi.org/10.1080/02772240701201158
  5. Yin, Z.; Milatovic, D.; Aschner, J. L.; Synersen, T.; Rocha, J. B. T.; Souza, D. O.; Sidoryk, M.; Albrecht, J.; Aschner, M. Brain Res. 2007, 1131, 1-10. https://doi.org/10.1016/j.brainres.2006.10.070
  6. Tamm, C.; Duckworth, J.; Hermanson, O.; Ceccatelli, S. Neurochem, J. 2006, 97, 69-78. https://doi.org/10.1111/j.1471-4159.2006.03718.x
  7. Ono, A.; Togashi, H. Angew. Chem. Int. Ed. 2004, 116, 4300-4302.
  8. US EPA (2001), Mercury update: impact on fish advisories, EPA-823-F-01-011.
  9. Nie, S. M.; Emery, S. R. Science 1997, 275, 1102-1106. https://doi.org/10.1126/science.275.5303.1102
  10. Tian, Z. Q.; Ren, B.; Wu, D. Y. J. Phys. Chem. B 2002, 106, 9463-9483. https://doi.org/10.1021/jp0257449
  11. Huang, C. C.; Chang, H. T. Chem. Commun. 2007, 1215-1217.
  12. Wang, G.; Lim, C.; Chen, L.; Chon, H.; Choo, J.; Hong, J.; deMello, A. J. Anal. Bioanal. Chem. 2009, 394, 1827-1832. https://doi.org/10.1007/s00216-009-2832-7
  13. Yu, C. J.; Tseng, W. L. Langmuir 2008, 24, 12717-12722. https://doi.org/10.1021/la802105b
  14. Lee, J. S.; Han, M. S.; Mirkin, C. A. Angew. Chem. Int. Ed. 2007, 46, 4093-4096. https://doi.org/10.1002/anie.200700269
  15. Liu, C. W.; Hsieh, Y. T.; Huang, C. C.; Lin, Z. H.; Chang, H. T. Chem. Commun. 2008, 2242-2244.
  16. Liu, C. W.; Huang, C. C.; Chang, H. T. Langmuir 2008, 24, 8346-8350. https://doi.org/10.1021/la800589m
  17. Li, D.; Wieckowska, D.; Willner, I. Angew. Chem., Int. Ed. 2008, 46, 4093-4096.
  18. Lee, J. S.; Lytton-Jean, A. K. R.; Mirkin, C. A. Nano Lett. 2007, 7, 2112-2115. https://doi.org/10.1021/nl071108g
  19. Wang, Z.; Lee, J. H.; Lu, Y. Chem. Commun. 2008, 6005-6007.
  20. Zhao, W.; Chiuman, W.; Lam, J. C. F.; McManus, S. A.; Chen, W.; Cui, Y.; Pelton, R.; Brook, M. A.; Li, Y. J. J. Am. Chem. Soc. 2008, 130, 3610-3618. https://doi.org/10.1021/ja710241b
  21. Wang, G.; Chen, L. Chinese Chem. Lett. 2009, 20, 1475-1477. https://doi.org/10.1016/j.cclet.2009.06.029
  22. Leopold, N.; Lendl, B. J. Phys. Chem. B 2003, 107, 5723-5727. https://doi.org/10.1021/jp027460u
  23. Jones, J. C.; McLaughlin, C.; Littlejohn, D.; Sadler, D. A.; Graham, D.; Smith, W. E. Anal. Chem. 1999, 71, 596-601. https://doi.org/10.1021/ac980386k
  24. Graham, D.; Faulds, K. Chem. Soc. Rev. 2008, 37, 1042-1051. https://doi.org/10.1039/b707941a
  25. Chiang, C. K.; Huang, C. C.; Liu, C. W.; Chang, H. T. Anal. Chem. 2008, 80, 3716-3721. https://doi.org/10.1021/ac800142k
  26. Wang, J.; Liu, B. Chem. Commun. 2008, 4759-4761.
  27. Kneipp, K.; Kneipp, H.; Kneipp, J. Acc. Chem. Res. 2006, 39, 443-450. https://doi.org/10.1021/ar050107x
  28. Srisa-Art, M.; Kang, D. K.; Hong, J.; Park, H.; Leatherbarrow, R. J.; Edel, J.B.; Chang, S. I.; deMello, A. J. ChemBioChem 2009, 10, 1605-1611. https://doi.org/10.1002/cbic.200800841

Cited by

  1. ) ions using aptamer-modified Au/Ag core–shell nanoparticles and SERS spectroscopy in a microdroplet channel vol.13, pp.2, 2013, https://doi.org/10.1039/C2LC41079F
  2. Ions in Aqueous Media Using Gold Nanoparticles/Graphene Heterojunctions vol.5, pp.15, 2013, https://doi.org/10.1021/am401373e
  3. Nanoporous Gold Based Optical Sensor for Sub-ppt Detection of Mercury Ions vol.7, pp.5, 2013, https://doi.org/10.1021/nn4013737
  4. Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food vol.13, pp.3, 2014, https://doi.org/10.1111/1541-4337.12062
  5. Ultrasensitive SERS Substrate Integrated with Uniform Subnanometer Scale “Hot Spots” Created by a Graphene Spacer for the Detection of Mercury Ions vol.13, pp.9, 2016, https://doi.org/10.1002/smll.201603347
  6. SERS-based mercury ion detections: principles, strategies and recent advances vol.59, pp.1, 2016, https://doi.org/10.1007/s11426-015-5504-9
  7. A novel and highly sensitive nanocatalytic surface plasmon resonance-scattering analytical platform for detection of trace Pb ions vol.6, pp.1, 2016, https://doi.org/10.1038/srep24150
  8. Resonance Rayleigh Scattering and SERS Spectral Detection of Trace Hg(II) Based on the Gold Nanocatalysis vol.7, pp.5, 2017, https://doi.org/10.3390/nano7050114
  9. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor vol.16, pp.11, 2016, https://doi.org/10.3390/s16111871
  10. Nachweis kleiner anorganischer Moleküle durch oberflächenverstärkte Raman‐Streuung (SERS) vol.124, pp.45, 2011, https://doi.org/10.1002/ange.201204438
  11. SERS Detection of Small Inorganic Molecules and Ions vol.51, pp.45, 2012, https://doi.org/10.1002/anie.201204438