DOI QR코드

DOI QR Code

Formation of Difluorobenzyl Radicals from 2,3,4-Trifluorotoluene in Corona Excitation

  • Yoon, Young-Wook (Department of Chemistry and The Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lee, Gi-Woo (Department of Chemistry and The Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lee, Sang-Kuk (Department of Chemistry and The Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2011.04.06
  • Accepted : 2011.05.06
  • Published : 2011.06.20

Abstract

The vibronically well-resolved emission spectrum was recorded from the corona discharge of precursor 2,3,4-trifluorotoluene in a corona excited supersonic expansion with a pinhole-type glass nozzle using a long-path monochromator in the visible region. From the analysis of the observed spectrum, we found the evidence of the presence of the difluorobenzyl radicals in the corona discharge of the precursor. A possible mechanism is proposed for the formation of difluorobenzyl radicals in the gas phase on the basis of the observed emission intensity of the difluorobenzyl radicals produced.

Keywords

References

  1. Carrington, A. Microwave Spectroscopy of Free Radicals; Academic Press: London, U.K., 1974.
  2. Tan, X. Q.; Wright, T. G.; Miller, T. A. Electronic Spectroscopy of Free Radicals in Supersonic Jets: Jet Spectroscopy and Molecular Dynamics; Hollas, J. M.; Phillip, D., Eds.; Blackie Academic & Professional: London, 1994.
  3. Selco, J. I.; Carrick, P. G. J. Mol. Spectrosc. 1989, 137, 13. https://doi.org/10.1016/0022-2852(89)90264-6
  4. Suh, M. H.; Lee, S. K.; Rehfuss, R. D.; Miller, T. A.; Bondybey, V. E. J. Phys. Chem. 1991, 95, 2727.
  5. Selco, J. I.; Carrick, P. G. J. Mol. Spectrosc. 1995, 173, 277. https://doi.org/10.1006/jmsp.1995.1233
  6. Lee, S. W.; Yoon, Y. W.; Lee, S. K. J. Phys. Chem. A 2010, 114, 9110. https://doi.org/10.1021/jp104161g
  7. Lee, G. W.; Lee, S. K. Chem. Phys. Lett. 2009, 470, 54. https://doi.org/10.1016/j.cplett.2009.01.024
  8. Ahn, H. G.; Lee, G. W.; Lee, S. K. J. Phys. Chem. A 2008, 112, 13427. https://doi.org/10.1021/jp8081134
  9. Lee, G. W.; Lee, S. K. J. Chem. Phys. 2007, 126, 214.
  10. Lee, G. W.; Lee, S. K. J. Phys. Chem. A 2007, 111, 6003. https://doi.org/10.1021/jp066488t
  11. Lee, S. K. Chem. Phys. Lett. 2002, 358, 110. https://doi.org/10.1016/S0009-2614(02)00595-X
  12. Bindley, T. F.; Watts, A. T.; Walker, S. Trans. Faraday Soc. 1964, 60, 1. https://doi.org/10.1039/tf9646000001
  13. Charlton, T. R.; Thrush, B. A. Chem. Phys. Lett. 1986, 125, 547. https://doi.org/10.1016/0009-2614(86)87096-8
  14. Fukushima, M.; Obi, K. J. Chem. Phys. 1990, 93, 8488. https://doi.org/10.1063/1.459710
  15. Cossart-Magos, C.; Cossart, D.; Leach, S. Chem. Phys. 1973, 1, 306. https://doi.org/10.1016/0301-0104(73)80043-6
  16. Cossart-Magos, C.; Cossart, D. Mol. Phys. 1988, 65, 627. https://doi.org/10.1080/00268978800101291
  17. Lee, S. K.; Baek, D. Y. Chem. Phys. Lett. 1999, 301, 407. https://doi.org/10.1016/S0009-2614(98)01436-5
  18. Lee, S. K.; Ahn, B. U. Chem. Phys. Lett. 2000, 321, 25. https://doi.org/10.1016/S0009-2614(00)00325-0
  19. Lee, S. K.; Lee, S. K. J. Phys. Chem. A 2001, 105, 3034. https://doi.org/10.1021/jp003627c
  20. Lee, S. K.; Baek, D. Y. J. Phys. Chem. A 2000, 104, 5219. https://doi.org/10.1021/jp9944684
  21. Lee, G. W.; Lee, S. K. Chem. Phys. Lett. 2006, 430, 8. https://doi.org/10.1016/j.cplett.2006.08.089
  22. Lee, G. W.; Lee, S. K. Chem. Phys. Lett. 2007, 440, 36. https://doi.org/10.1016/j.cplett.2007.04.011
  23. Lee, G. W.; Ahn, H. G.; Kim, T. K.; Lee, S. K. Chem. Phys. Lett. 2007, 447, 197. https://doi.org/10.1016/j.cplett.2007.09.024
  24. Ahn, H. G.; Lee, G. W.; Kim, T. K.; Lee, S. K. Chem. Phys. Lett. 2008, 454, 207. https://doi.org/10.1016/j.cplett.2008.02.044
  25. Lee, S. K.; Baek, D. Y. Chem. Phys. Lett. 1999, 311, 36. https://doi.org/10.1016/S0009-2614(99)00834-9
  26. Yoon, Y. W.; Lee, S. W.; Lee, S. K. Bull. Korean Chem. Soc. 2010, 31, 2479. https://doi.org/10.5012/bkcs.2010.31.9.2479
  27. Han, M. S.; Choi, I. S.; Lee, S. K. Bull. Korean Chem. Soc. 1996, 17, 991.
  28. Weise, M. L.; Smith, M. W.; Glennon, B. M. Atomic Transition Probabilities; NSRD-NBS4, 1966.
  29. Hiratsuka, H.; Mori, K.; Shizuka, H.; Fukushima, M.; Oki, K. Chem. Phys. Lett. 1989, 157, 35. https://doi.org/10.1016/0009-2614(89)87203-3
  30. Fujiwara, M.; Tanimoto, Y. J. Phys. Chem. 1994, 98, 5695. https://doi.org/10.1021/j100073a020
  31. Atkins, P. W. Physical Chemistry, 6th ed.; Oxford University Press: Oxford, 1998.
  32. Yoon, Y. W.; Lee, S. W.; Lee, S. K. Bull. Korean Chem. Soc. 2010, 31, 2783. https://doi.org/10.5012/bkcs.2010.31.10.2783

Cited by

  1. The electronic spectroscopy of resonance-stabilised hydrocarbon radicals vol.35, pp.2, 2016, https://doi.org/10.1080/0144235X.2016.1166830