References
- Wolfenden, R.; Andersson, L.; Cullis, P. M.; Southgate, C. C. B. Biochemistry 1981, 20, 849. https://doi.org/10.1021/bi00507a030
- Wada, G.; Tamura, E.; Okina, M.; Nakamura, M. Bull. Chem. Soc. Jpn. 1982, 55, 3064. https://doi.org/10.1246/bcsj.55.3064
- Slifkin, M. A.; Ali, S. M. J. Mol. Liq. 1984, 28, 215. https://doi.org/10.1016/0167-7322(84)80025-2
- Sharp, K. A.; Nicholls, A.; Friedman, R.; Honig, B. Biochemistry 1991, 30, 9686. https://doi.org/10.1021/bi00104a017
- Gaffney, J. S.; Pierce, R. C.; Friedman, L. J. Am. Chem. Soc. 1977, 99, 4293. https://doi.org/10.1021/ja00455a015
- Godfrey, P. D.; Brown, R. D. J. Am. Chem. Soc. 1995, 117, 2019. https://doi.org/10.1021/ja00112a015
- Locke, M. J.; McIver, R. T., Jr. J. Am. Chem. Soc. 1983, 105, 4226. https://doi.org/10.1021/ja00351a017
- Suenram, R. D.; Lovas, F. J. J. Am. Chem. Soc. 1980, 102, 7180. https://doi.org/10.1021/ja00544a002
- Ramaekers, R.; Pajak, J.; Lambie, B.; Maes, G. J. Chem. Phys. 2004, 120, 4182. https://doi.org/10.1063/1.1643735
- Balabin, R. M. J. Phys. Chem. B 2010, 114, 15075. https://doi.org/10.1021/jp107539z
- Aikens, C. M.; Gordon, M. S. J. Am. Chem. Soc. 2006, 128, 12835. https://doi.org/10.1021/ja062842p
- Bachrach, S. M. J. Phys. Chem. A 2008, 112, 3722. https://doi.org/10.1021/jp711048c
- Kundrat, M. D.; Autschbach, J. J. Chem. Theory Comput. 2008, 4, 1902. https://doi.org/10.1021/ct8002767
- Takayanagi, T.; Yoshikawa, T.; Kakizaki, A.; Shiga, M.; Tachikawa, M. J. Mol. Struct. (Theochem) 2008, 869, 29. https://doi.org/10.1016/j.theochem.2008.08.016
- Fernandez-Ramos, A.; Smedarchina, Z.; Siebrand, W.; Zgierski, M. Z. J. Chem. Phys. 2000, 113, 9714. https://doi.org/10.1063/1.1322084
- Balta, B.; Aviyente, V. J. Comput. Chem. 2004, 25, 690. https://doi.org/10.1002/jcc.10422
- Tortonda, F. R.; Pascual-Ahuir, J. L.; Silla, E.; Tunon, I. Chem. Phys. Lett. 1996, 260, 21. https://doi.org/10.1016/0009-2614(96)00839-1
- Tian, S. X.; Sun, X.; Cao, R.; Yang, J. J. Phys. Chem. A 2009, 113, 480. https://doi.org/10.1021/jp8092594
- Tiwari, S.; Mishra, P. C.; Suhai, S. Int. J. Quantum Chem. 2008, 108, 1004. https://doi.org/10.1002/qua.21557
- Bonaccorsi, R.; Palla, P.; Tomasi, J. J. Am. Chem. Soc. 1984, 106, 1945. https://doi.org/10.1021/ja00319a008
- Balta, B.; Aviyente, V. J. Comput. Chem. 2003, 24, 1789. https://doi.org/10.1002/jcc.10341
- Radzicka, A.; Wolfenden, R. Biochemistry 1988, 27, 1664. https://doi.org/10.1021/bi00405a042
- Sun, J.; Bousquet, D.; Forbert, H.; Marx, D. J. Chem. Phys. 2010, 133, 114508. https://doi.org/10.1063/1.3481576
- Leung, K.; Rempe, S. B. J. Chem. Phys. 2005, 122, 184506. https://doi.org/10.1063/1.1885445
- Watanabe, T.; Hashimoto, K.; Takase, H.; Kikuchi, O. J. Mol. Struct. (Theochem) 1997, 397, 113. https://doi.org/10.1016/S0166-1280(96)04942-1
- Kiani, F.; Rostami, A. A.; Sharifi, S.; Bahadori, A.; Chaichi, M. J. J. Chem. Eng. Data 2010, 55, 2732. https://doi.org/10.1021/je900975s
- Gontrani, L.; Mennucci, B.; Tomasi, J. J. Mol. Struct. (Theochem) 2000, 500, 113. https://doi.org/10.1016/S0166-1280(00)00390-0
- Bouchoux, G.; Xuan, R. Chia. Croat. Chem. Acta 2009, 82, 47.
- Wood, G. P. F.; Gordon, M. S.; Radom, L.; Smith, D. M. J. Chem. Theory Comput. 2008, 4, 1788. https://doi.org/10.1021/ct8002942
- Tunon, I.; Silla, E.; Ruiz-Lopez, M. F. Chem. Phys. Lett. 2000, 321, 433. https://doi.org/10.1016/S0009-2614(00)00365-1
- Ke, H.-W.; R. Li.; Xu, X.; Yan, Y.-J. J. Theor. Comput. Chem. 2008, 7, 889. https://doi.org/10.1142/S0219633608004192
- Selvarengan, P.; Kolandaivel, P. J. Mol. Struct. (Theochem) 2002, 617, 99. https://doi.org/10.1016/S0166-1280(02)00421-9
- Tortonda, F.R.; Pascual-Ahuir, J.L.; Silla, E.; Tunon, I. J. Mol. Struct. (Theochem) 2003, 623, 203. https://doi.org/10.1016/S0166-1280(02)00697-8
- Kwon, O. Y.; Kim, S. Y.; No, K. T. Bull. Korean Chem. Soc. 1995, 16, 410.
- Yu, D.; Armstrong, D. A.; Rauk, A. Can. J. Chem. 1992, 70, 1762. https://doi.org/10.1139/v92-221
- Bykov, S. V.; Myshakina, N. S.; Asher, S. A. J. Phys. Chem. B 2008, 112, 5803. https://doi.org/10.1021/jp710136c
- Engelke, R.; Blais, N. C.; Sheffield, S. A. J. Phys. Chem. A 2010, 114, 8234. https://doi.org/10.1021/jp102506k
- Falzon, C. T.; Wang, F. J. Chem. Phys. 2005, 123, 214307. https://doi.org/10.1063/1.2133727
- Hu, C.-H.; Shen, M.; Schaefer III, H. F. J. Am. Chem. Soc. 1993, 115, 2923. https://doi.org/10.1021/ja00060a046
- Jensen, J. H.; Gordon, M. S. J. Am. Chem. Soc. 1995, 117, 8159. https://doi.org/10.1021/ja00136a013
- Vishveshwara, S.; Pople, J. A. J. Am. Chem. Soc. 1977, 99, 2422. https://doi.org/10.1021/ja00450a004
- Leng, Y.; Zhang, M.; Song, C.; Chen, M.; Lin, Z. J. Mol. Struct. (Theochem) 2008, 858, 52. https://doi.org/10.1016/j.theochem.2008.02.016
- Jeon, I.-S.; Ahn, D.-S.; Park, S.-W.; Lee, S.Y.; Kim B. S. Int. J. Quantum Chem. 2005, 101, 55. https://doi.org/10.1002/qua.20269
- Cao, X.; Fischer, G. J. Phys. Chem. A 1999, 103, 9995. https://doi.org/10.1021/jp992421c
- Bandyopadhyay, P.; Gordon, M. S.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 2002, 116, 5023. https://doi.org/10.1063/1.1433503
- Sagarik, K.; Dokmaisrijan, S. J. Mol. Struct. (Theochem) 2005, 718, 31. https://doi.org/10.1016/j.theochem.2004.10.091
- Mullin, J. M.; Gordon, M. S. J. Phys. Chem. B 2009, 113, 8657. https://doi.org/10.1021/jp901459y
- Osted, A.; Kongsted, J.; Mikkelsen, K. V.; Christiansen, O. Chem. Phys. Lett. 2006, 429, 430. https://doi.org/10.1016/j.cplett.2006.08.060
- Tajkhorshid, E.; Jalkanen, K. J.; Suhai, S. J. Phys. Chem. B 1998, 102, 5899. https://doi.org/10.1021/jp9803135
- Chuchev, K.; BelBruno, J. J. J. Mol. Struct. (Theochem) 2008, 850, 111. https://doi.org/10.1016/j.theochem.2007.10.026
- Kapitan, J.; Baumruk, V.; Kopecky. Jr., V; Bouo, P. J. Phys. Chem. A 2006, 110, 4689. https://doi.org/10.1021/jp060260o
- Kang, Y. K.; Byun, B. J.; Kim, Y. H.; Kim, Y. H.; Lee, D. H.; Lee, J. Y. Bull. Korean Chem. Soc. 2008, 29, 1149. https://doi.org/10.5012/bkcs.2008.29.6.1149
- Wright, L. R.; Borkman, R. F. J. Am. Chem. Soc. 1980, 102, 6207. https://doi.org/10.1021/ja00540a006
- Tortonda, F. R.; Pascual-Ahuir, J.-L.; Silla, E.; Tunon, I. J. Chem. Phys. 1998, 109, 592. https://doi.org/10.1063/1.476596
- Nina, M.; Beglov, D.; Roux, B. J. Phys. Chem. B 1997, 101, 5239. https://doi.org/10.1021/jp970736r
- Park, J.-H.; Lee, J.-W.; Park, H. Bull. Korean Chem. Soc. 2010, 31, 1247. https://doi.org/10.5012/bkcs.2010.31.5.1247
- MacDermott, J.; Fu, T.; Hyde, G. O.; Nakatsuka, R.; Coleman, A. P. Orig. Life Evol. Biosph. 2009, 39, 407. https://doi.org/10.1007/s11084-009-9161-x
- Wyttenbach, T.; Witt, M.; Bowers, M. T. J. Am. Chem. Soc. 2000, 122, 3458. https://doi.org/10.1021/ja992546v
- Smith, B. J. J. Comput. Chem. 1999, 20, 428. https://doi.org/10.1002/(SICI)1096-987X(199903)20:4<428::AID-JCC4>3.0.CO;2-1
- Dixit, S. B.; Bhasin, R.; Rajasekaran, E.; Jayaram, B. J. Chem. Soc. Faraday Trans. 1997, 93, 1105. https://doi.org/10.1039/a603913h
- Kim, J.; Nam, K.-Y.; Cho, K.-H.; Choi, S.-H.; Noh, J. S.; No, K. T. Bull. Korean Chem. Soc. 2003, 24, 1742. https://doi.org/10.5012/bkcs.2003.24.12.1742
- Chowdhry, B. Z.; Dines, T. J.; Jabeen, S.; Withnall, R. J. Phys. Chem. A 2008, 112, 10333. https://doi.org/10.1021/jp8037945
- Csaszar, A. G.; Perczel, A. Progress in Biophysics & Molecular Biology 1999, 71, 243. https://doi.org/10.1016/S0079-6107(98)00031-5
- Kaminsky, J.; Jensen, F. J. Chem. Theory Comput. 2007, 3, 1774. https://doi.org/10.1021/ct700082f
- Im, S.; Jang, S.-W.; Lee, S.; Lee, Y.; Kim, B. J. Phys. Chem. A 2008, 112, 9767. https://doi.org/10.1021/jp801933y
- Chen, M.; Lin, Z. J. Chem. Phys. 2007, 127, 154314. https://doi.org/10.1063/1.2777161
- Bachrach, S. M.; Nguyen, T. T.; Demoin, D. W. J. Phys. Chem. A 2009, 113, 6172. https://doi.org/10.1021/jp901491p
- Liu, S.-Z.; Wang, H.-Q.; Zhou, Z.-Y.; Dong, X.-L.; Gong, X.-L. Int J. Quantum. Chem. 2005, 105, 66. https://doi.org/10.1002/qua.20677
- Sproviero, E. M.; Newcomer, M.B.; Gascon, J. A.; Batista, E. R.; Brudvig, G. W.; Batista, V. S. Photosynth. Res. 2009, 102, 455. https://doi.org/10.1007/s11120-009-9467-6
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669. https://doi.org/10.1002/jcc.10189
- Takano, Y.; Houk, K. N. J. Chem. Theory Comput. 2005, 1, 70. https://doi.org/10.1021/ct049977a
- Barone, V.; Cossi, M.; Tomasi, J. J. Comput. Chem. 1998, 19, 404. https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W
- Barone, V.; Cossi, M.; Tomasi, J. J. Chem. Phys. 1997, 107, 3210. https://doi.org/10.1063/1.474671
- Weast, R. C., Ed.; Handbook of Chemistry and Physics, CRC Press: Cleveland, U.S.A, 1981.
- Bondi, A. J. Phys. Chem. 1964, 68, 441. https://doi.org/10.1021/j100785a001
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N..; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli. C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.02 ed.; Gaussian, Inc., Wallingford CT, 2004.
- Weiss, S.; Leroi, G. E. J. Chem. Phys. 1968, 48, 962. https://doi.org/10.1063/1.1668849
Cited by
- Comprehensive studies on the tautomerization of glycine: a theoretical study vol.11, pp.8, 2013, https://doi.org/10.1039/c2ob26602d
- Computational Study on Protolytic Dissociation of HCl and HF in Aqueous Solution vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1029
- Values in Aqueous Solution vol.119, pp.21, 2015, https://doi.org/10.1021/jp5099552
- Conformational free energy surfaces of non-ionized glycine in aqueous solution vol.135, pp.4, 2016, https://doi.org/10.1007/s00214-016-1857-1
- Can THF hydrogen bond to glycine as strong as water? vol.95, pp.6, 2017, https://doi.org/10.1139/cjc-2016-0604
- Stabilization of glyphosate zwitterions and conformational/tautomerism mechanism in aqueous solution: insights from ab initio and density functional theory-continuum model calculations vol.23, pp.46, 2021, https://doi.org/10.1039/d1cp03161a